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two ordinary G-structures on TMint

many possibilities G(ϵ1) ∩ G(ϵ2)

Pure spinor approach to susy vacua in type II: working on T ⊕T *

one G-structure on T⊕T *:
“generalized tangent bundle”: vectors ⊕1-forms

or ⇒

nicer equations, 
easier classification 

(BPS eqs. + Bianchi ids. 
notoriously hard to solve)

forms obeying algebraic constraints 
(often pure spinors)

M10 = Mink or AdS x Mint

[Hitchin ’02, Gualtieri ‘04]
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✤ warm-up: F0 = 0

reduction of FR agrees with our results in 10d! (ODEs are exactly solvable in massless case)
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preserve same amount of susy
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false for massive AdS7 vacua with D6’s: trivial conclusion of pure spinor formalism

[Danielsson, Dibitetto, MF, Van Riet ’13]

no solution to BPS system

smearing: ɸ = const, A = const, F2 = 0

tan(𝜃1)d𝜃1 = cot(𝜃2)d𝜃2 
Vielbein ea(𝜃i) on M3 

degenerates

non-susy numerical configurations with localized D6’s: [Junghans, Schmidt, Zagermann ’14] 
with smeared D6’s, solutions to 10d EoM: [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann ’11]
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compare scalar potentials V :
V of half-maximal and maximal 

7d gauged sugra
V of compactifications of massive IIA 

with smeared D6 charge to 7d≠
therefore massive AdS7 vacua with smeared D6’s 
do not admit any 7d gauged sugra description

[Danielsson, Dibitetto, 
MF, Van Riet ’13]



try to obtain lower-dim.!
gauged sugra description

compare scalar potentials V :
V of half-maximal and maximal 

7d gauged sugra
V of compactifications of massive IIA 

with smeared D6 charge to 7d≠
therefore massive AdS7 vacua with smeared D6’s 
do not admit any 7d gauged sugra description

[Danielsson, Dibitetto, 
MF, Van Riet ’13]

susy AdS7 flux vacua in IIA

non-susy solutions to 10d EoM
7d gauged sugras

smearing 
sources

smearing + dim. reducing
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Using pure spinors, we classified all 

supersymmetric AdS7 x M3 vacua of type II theories, 
without using any Ansatz

no solutions in IIB  
one solution in massless IIA with D6’s 
many new ones in massive IIA with D8-D6’s

M3 is an S2 fibration  
over an interval 

(has topology of S3)



Conclusions
Using pure spinors, we classified all 

supersymmetric AdS7 x M3 vacua of type II theories, 
without using any Ansatz

no solutions in IIB  
one solution in massless IIA with D6’s 
many new ones in massive IIA with D8-D6’s

M3 is an S2 fibration  
over an interval 

(has topology of S3)

We proved that massive vacua with D6’s 
do not admit a 7d gauged sugra description.  
Moreover, smearing the sources breaks susy

1st example of flux vacua with these highly unusual features


