All AdS₇ solutions of type II supergravity

Marco Fazzi

1309.2949 F. Apruzzi, MF, D. Rosa, A. Tomasiello 1311.6470 U. Danielsson, G. Dibitetto, MF, T. Van Riet

> String Phenomenology Trieste, July 9th 2014

INTERNATIONAL SOLVAY INSTITUTES Brussels

Classification of AdS₇ supersymmetric solutions of type II

- no vacua in IIB
- in massless IIA, only one solution: reduction of 11d AdS₇ x S^4 (/ Γ_{ADE})
- in massive IIA, many new ones!

Romans mass $F_0 \neq 0$ (no lift to 11d)

• A classification of AdS₇ BPS solutions in type II sugra.

* if lassification of type II

• no vacua in IIB • but in massive IIA, many new solutions!

• in massless IIA, only one solution:

AdS₇ × M_3 Romans equation of 11d AdS₇ x S⁴ (/ Γ_{ADE}) no lift to 11d

• in massive IIA, many new $i started S^3$ '

D8-D6 bound states (stabilized by flux)

• The Mass Fo(≠10, 0) CFT₆ AdS₇ x M₃ (no lift to 11d) (Indiff to 11d) (I

• A classification of AdS₇ BPS solutions in type II sugra.

* if lagsification of type II

- Novel physical features
- smearing the branes breaks susy
- NO lower-dim. gauged sugra description

Plan

- 1. Methods: pure spinors
 - 2. Classification of AdS₇ solutions
 - 3. Physical implications

1. Pure spinors

Pure spinor approach to susy vacua in type II: working on $T \oplus T^*$

 $M_{10} = \text{Mink or AdS} \times M_{\text{int}}$

1. Pure spinors

Pure spinor approach to susy vacua in type II: working on $T \oplus T^*$

 $M_{10} = \text{Mink or AdS} \times M_{\text{int}}$

1. Pure spinors

Pure spinor approach to susy vacua in type II: working on $T \oplus T^*$

 $M_{10} = \text{Mink or AdS} \times M_{\text{int}}$

6d + 4d: AdS₆ x *M*₄: Identity structure = Vielbein [Apruzzi, MF, Passias, Rosa, Tomasiello '14]

*oversimplifying the story...

*oversimplifying the story...

[Apruzzi, MF, Rosa, Tomasiello '13]

[Apruzzi, MF, Rosa, Tomasiello '13]

coming from Φ

||B: system contains 0-form eqs. for θ_i

[Apruzzi, MF, Rosa, Tomasiello '13]

coming from Φ -----

IIB: system contains 0-form eqs. for θ_i no solutions!

[Apruzzi, MF, Rosa, Tomasiello '13]

- IIB: system contains 0-form eqs. for θ_i no solutions!
- IIA: system contains 1-form eqs.

 $e^{a} \sim f(\theta_{i}) d\theta_{i}$

[Apruzzi, MF, Rosa, Tomasiello '13]

coming from Φ

- IIB: system contains of form eqs. for the solutions!
 - IIA: system contains 1-form eqs.

the system contains zero-form equations on θ_i

 $e^{a} \sim f(\theta_{i}) d\theta_{i} \Longrightarrow_{e^{a} \sim \operatorname{functions}(\theta_{i})} \operatorname{local form of}_{d(\theta_{i})} \operatorname{metric}$

no Ansatz necessary!

⇒ S² fibration over interval \cong S³ $ds^2 \sim dr^2 + v^2(r) ds_{S^2}^2$

> This S^2 realizes the SU(2) R-symmetry of a (1,0) 6d theory.

 $\partial_r A = \dots$ $\partial_r v = \dots$ $\partial_r \phi =$

[Apruzzi, MF, Rosa, Tomasiello '13]

 $\partial_r A = \dots$ dilaton

 $\partial_r v = \dots$

 $\partial_{m}\phi =$

(vacuum solution: all fields depend only on M_3)

AdS₇ x M_4 in 11d sugra SO(6,2) and $G_4 \propto \text{vol}(M_4)$ cone over *M*₄ should have reduced holonomy (in 5d, only R⁵ / Γ_{ADE})

 $M_4 = S^4 / \Gamma_{ADE}$ [Freund-Rubin '80]

AdS₇ x M_4 in 11d sugra SO(6,2) and $G_4 \propto \text{vol}(M_4)$ cone over *M*₄ should have reduced holonomy (in 5d, only R⁵ / Γ_{ADE})

 $M_4 = S^4 / \Gamma_{ADE}$ [Freund-Rubin '80]

AdS₇ x M_4 in 11d sugra SO(6,2) and $G_4 \propto \text{vol}(M_4)$ cone over *M*₄ should have reduced holonomy (in 5d, only R⁵ / Γ_{ADE})

 $M_4 = S^4 / \Gamma_{ADE}$

[Freund-Rubin '80]

reduction of FR agrees with our results in 10d! (ODEs are exactly solvable in massless case)

◆ $F_0 \neq 0$: many **new solutions** with branes

(massive IIA does not lift to 11d)

make one pole of S^3 regular:

0) CFT₆ duals.

0) CFT₆ duals.

graphics courtesy of Alessandro

common lore in flux vacua: when calibrated sources are present, smear the source ("warping" = 0) to perform KK reduction and get lower-dim. description

smeared and localized solutions preserve same amount of susy

common lore in flux vacua: when calibrated sources are present, smear the source ("warping" = 0) to perform KK reduction and get lower-dim. description

smeared and localized solutions preserve same amount of susy

false for massive AdS7 vacua with D6's: trivial conclusion of pure spinor formalism

common lore in flux vacua: when calibrated sources are present, smear the source ("warping" = 0) to perform KK reduction and get lower-dim. description

smeared and localized solutions preserve same amount of susy

false for massive AdS7 vacua with D6's: trivial conclusion of pure spinor formalism

smearing: ϕ = const, *A* = const, *F*₂ = 0

 $tan(\theta_1)d\theta_1 = cot(\theta_2)d\theta_2$ $tan(\theta_1)d\theta_1 = cot(\theta_2)d\theta_2$ $tan(\theta_1)d\theta_1 = cot(\theta_2)d\theta_2$

common lore in flux vacua:

when calibrated sources are present, smear the source ("warping" = 0) to perform KK reduction and get lower-dim. description

smeared and localized solutions preserve same amount of susy

false for massive AdS₇ vacua with D6's: trivial conclusion of pure spinor formalism

smearing: ϕ = const, A = const, F_2 = 0

 $tan(\theta_1)d\theta_1 = cot(\theta_2)d\theta_2$ Vielbein $e^a(\theta_i)$ on M_3

[Danielsson, Dibitetto, MF, Van Riet '13]

no solution to BPS system

non-susy numerical configurations with localized D6's: [Junghans, Schmidt, Zagermann '14] with smeared D6's, solutions to 10d EoM: [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann '11] try to obtain lower-dim. gauged sugra description

compare scalar potentials V:

.

try to obtain **lower-dim**. gauged sugra description

compare scalar potentials V:

V of half-maximal and maximal 7d gauged sugra

✓ of compactifications of massive IIA with smeared D6 charge to 7d

therefore massive AdS₇ vacua with smeared D6's do not admit any 7d gauged sugra description

[Danielsson, Dibitetto, MF, Van Riet '13] try to obtain lower-dim. gauged sugra description

compare scalar potentials V:

V of half-maximal and maximal 7d gauged sugra

≠

V of compactifications of massive IIA with smeared D6 charge to 7d

therefore massive AdS₇ vacua with smeared D6's do not admit any 7d gauged sugra description

[Danielsson, Dibitetto, MF, Van Riet '13]

Conclusions

Using pure spinors, we classified all supersymmetric $AdS_7 \times M_3$ vacua of type II theories, without using any Ansatz

no solutions in IIB one solution in massless IIA with D6's many new ones in massive IIA with D8-D6's

M₃ is an S² fibration over an interval (has topology of S³)

Conclusions

Using pure spinors, we classified all supersymmetric $AdS_7 \times M_3$ vacua of type II theories, without using any Ansatz

no solutions in IIB one solution in massless IIA with D6's many new ones in massive IIA with D8-D6's

M₃ is an S² fibration over an interval (has topology of S³)

We proved that massive vacua with D6's do not admit a 7d gauged sugra description. Moreover, smearing the sources breaks susy

> 1st example of flux vacua with these highly unusual features