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Higher-Curvature Corrections in String Theory

✔ Stringy tree-level (!’) and 1-loop level (gs) corrections to 10 
dimensional SUGRA has been computed in type II theories.
[Green-Schwarz 1982]   [Gross-Witten 1986]   [Grisaru-Zanon 1986]   [Freeman-Pope 1986]

✔ Corrections are at 8-derivative level, Quartic in the Riemann Tensor  
 
✔ Corrections are uplifted to 11 dimensional SUGRA

[Green-Gutperle-Vanhofe 3x1997]  [Antoniadis-Ferrara etal 1997] [Russo-Tseytlin 1997]
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✔ KK Reduction on compact manifolds to get 4D minimal SUGRA                                     
+Corrections

11D N=1 SUGRA

3D N=2 SUGRA5D N=1 SUGRA

4D N=1 SUGRA

G2

CY4CY3

Uplift
Reduce

✔ The Road Map:

    [Antoniadis-Ferrara etal 1997]    [Grimm-Savelli etal 2013]  

Higher-Curvature Corrections in String Theory
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✔ A glimpse of what we get

Higher-Curvature Corrections in String Theory
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✔ Note we also have



The Electroweak Symmetry Breaking and the Vacuum Metastability
of a Non-minimally Coupled Higgs in the Curvature-driven Inflation

Mahdi Torabian
School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran and

International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151, Trieste, Italy

The LHC-I measurements of the Higgs and top quark mass and the strong coupling constant
indicates that the electroweak vacuum is metastable. In fact, the Standard Model Higgs potential
is unbounded from below; the global minimum is orders of magnitude deeper than the local one
and the barrier separating the two is miniscule. Although quite long-lived on cosmological scales,
it is not clear how did the Higgs entrap in the local minimum stick to it during a rather high-scale
inflation. In this note it is shown that the curvature-driven inflation and a non-minimally coupled
Higgs to gravity solve the problems. Radiative breaking is also possible.....

Introduction The Higgs field is non-minimally cou-
pled to a general theory of gravity
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✔ A Weyl transformation from the Jordan to the Einstein frame:

A phenomenological view: 

✔ A scalar field non-minimally coupled to a higher-derivative gravity:

If not at tree-level, will be loop-induced anyway
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The 4-dimensional Effective Action

non-canonical kinetic term

✔ The action in the Einstein frame: Weyl scalar

✔ The scalar potential:

I. INTRODUCTION

II. THE SETUP

A. The Action

The action in the Jordan frame takes the following form

S =

∫
d4x(−g)1/2

(1
2
m2

Plf(R,ϕ) + P (X,ϕ)
)
, (1)

where

f(R,ϕ) = (1 + ξm−2
Pl ϕ

2)R+ αm−2
Pl R

2, (2)

P (X,ϕ) = −f−1(ϕ)
[
(1− 2f(ϕ)X)1/2 − 1

]
− V (ϕ), (3)

and

X = −1

2
gµν∂µϕ∂νϕ, (4)

By a suitable Weyl transformation of the metric

gEµν = (1 + ξm−2
Pl ϕ

2 + 2αm−2
Pl R)gµν ≡ eχ̃gµν , (5)

one can move to the Einstein frame with the following action

S =

∫
d4x(−gE)

1/2
(1
2
m2

PlRE−
1
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gµνE ∂µχ∂νχ− VE(χ) + PE(X,ϕ)

)
, (6)

where now

VE(χ) =
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8
α−1m4

Pl

(
1− e−χ̃
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, (7)

PE(X,ϕ) = −e−2χ̃f−1(ϕ)
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− e−2χ̃V (ϕ), (8)
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B. The Equations of Motion

We find the equations of motion for the metric, the DBI field and the Weyl field in a isotropic/homogenous
background

ds2 = −dt2 + a(t)dx, ϕ = ϕ(t), χ = χ(t). (9)

The boost factor in the homogenous background field is

γ =
(
1− f(ϕ)ϕ̇2eχ̃

)−1/2
. (10)

The equations of motion for the metric in a Friedman-Robertson-Walker background can be read as the Friedmann
equation

3H2m2
Pl =

1

2
χ̇2 + α−1m4

Pl(1− e−χ̃)2 + e−2χ̃V (ϕ)− e−2χ̃f−1(1− γ), (11)

and the time variation of the Hubble scale as follows

− 2Ḣm2
Pl = χ̇2 + e−2χ̃f−1(γ − γ−1) (12)

The equation of motion for the homogenous DBI field is

ϕ̈+ 3Hγ−2ϕ̇+ e−χ̃γ−3Vϕ(ϕ) +
1

2
(1− 3γ−2)ϕ̇χ̇+

1

2
e−χ̃f−2(ϕ)fϕ(ϕ)

(
1− 3γ−2 + 2γ−3

)
= 0, (13)

Finally the equation of motion for the Weyl field can be found as

χ̈+ 3Hχ̇+ (8/3)1/2α−1m3
Ple

−χ̃(1− e−χ̃)− 2e−2χ̃V (ϕ) +
1

2
e−2χ̃f−1(ϕ)

(
4− γ − 3γ−1

)
= 0, (14)

2

(                            )
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2

✔ EOMs for the scalars and metric in an isotropic/homogenous b.g.
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✔ Numerically solve the equations for varieties of potentials…..

✔ Embed this model in a cosmological setup
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✔ The simplest model used to be  
fascinating in the pre-BICEP era!
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Massive Scalar in the Jordan Frame
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✔ The minimum of the potential:
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λ(mPl) + ξ(mPl)
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0 " m2

Pl, (35)

ξ " 1032, (36)

2
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− 2Ḣm2
Pl = χ̇2 + e−χ̃ϕ̇2, (22)

14



246 GeV

10  GeV
10

(10  GeV)
10

10  GeV
18

4

- Huge  GeV
4

h
[Degrassi etal 2012]

The Metastable Electroweak Vacuum

✔ Fine-tuning of the Higgs value!

✔ The Standard Model extrapolated to HE:

[see Lebedev-Westphal 2013]

Stable enough, however 
How Inflation began at all? 

How come we end up exactly here? 
Howe come not kicked off from here?15



✔ The Higgs potential

Introduction The Higgs field is non-minimally coupled to a general theory of gravity
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Higgs-like Field in the Jordan Frame
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✔ Boundedness from below implies that
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Q. Is that consistent with collider phenomenology?

✔ Certainly consistent with cosmology

Q. Is it too big a number?
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At the LHC, the Higgs boson production and decay will be effected by the above sup-

pression. At each vertex involving the Higgs boson coupled to standard model particles, a

factor of 1/
√
1 + β will be introduced. Clearly if β ≫ 1 the Higgs boson would simply not

be produced in a large enough abundance to be observed.

In the following we will make the assumption that the Higgs boson like particle recently

observed at the LHC is the standard model Higgs boson and that there are no other degrees

of freedom beyond those present in the standard model and Einstein gravity. We will refer

to the usual standard model total cross section for Higgs boson production and decay with

β = 0 as σSM. If the cross section including a non-zero β is given by σ, we are interested

in the ratio σ/σSM. The LHC experiments produce fits to the data assuming that all Higgs

boson couplings are modified by a single parameter κ [19] which in our model corresponds

to κ = 1/
√
1 + β. Using the narrow width approximation, the cross section for Higgs

production and decay from any initial i to final state f is given by

σ(ii → H) · BR(H → ff) = σSM(ii → H) · BRSM(H → ff) · κ2 . (10)

One might naively expect the cross section to be proportional to κ4, but in the narrow

width approximation this is not the case. The presence of the branching fraction, which

is independent of a universal suppression of the couplings, leads to the cross section being

proportional to κ2. For a 125 GeV Higgs the narrow width limit is an excellent approximation

and is used in the determination of the signal strength at the LHC.

The ATLAS detector has currently measured the global signal strength µ = σ/σSM =

1.4 ± 0.3 [9] and CMS has measured this as µ = 0.87 ± 0.23 [8]. Combining these results

gives µ = 1.07± 0.18. This excludes |ξ| > 2.6× 1015 at the 95% C.L.

Reference [20] estimates the expected reach in the accuracy of the measurement of the

Higgs boson couplings in a large number of processes in future runs at the LHC and the

proposed ILC. We combine these results to give an estimated uncertainty in the global

signal strength µ. We assume a central value of µ = 1. At a 14 TeV LHC with an integrated

luminosity of 300 fb−1, the uncertainty in the measurement of µ is expected to be 0.07 which

would lead to a bound on |ξ| < 1.6×1015. At the ILC with a center of mass of 500 GeV and

an integrated luminosity of 500 fb−1, the expected uncertainty on µ is 0.005, which gives

a bound of |ξ| < 4 × 1014. Despite expected measurements of the total cross section to an

accuracy better than 1% at future high energy runs at the ILC, we cannot expect to push

the constraints on |ξ| below about 1014.

Given a large non-minimal coupling to gravity, one might also expect to have decreased

observable rates for Higgs decays at the LHC arising from unobserved decays to gravitons.

The effect is in fact very small as we will now discuss. The lowest order vertex in ξ is a three

4

CMS+Atlas exclude 
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No Scalar Potential in the Jordan Frame: Revisited

✔ A non-zero vev and mass is induced by non-zero Weyl vev

17
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− 2Ḣm2
Pl = χ̇2 + e−χ̃ϕ̇2, (22)

VE(ϕ,χ) =
1

8
α−1m4

Pl

(
1− e−χ̃(1 + ξm−2

Pl ϕ
2)
)2
,

(23)

χ̃0 = ln
[
(1 + ξϕ2

0)
]
, (24)

m2
χ =

1

6α
m2

Pl, (25)

ϕ2
0 = ξ−1m2

Pl(e
χ̃0 − 1), (26)

ϕ2
0 ≈ ξ−1mPlχ0 ≈ ξ−1ξHiggsv

2, (27)

m2
ϕ = (ξ2/α)ϕ2

0 ≈ ξξHiggsv
2/α, (28)

V (ϕ) =
1

2
m2ϕ2, (29)

3

χ0 ≈ ξϕ2
0m

−1
Pl ∼ 10−5ξ eV, (15)

m2
χ ≈ 1

6α
m2

Pl ∼ (1013 GeV)2, (16)

−m(mZ)
2/λ(mZ) ∼ (246 GeV)2, (17)

λ(mZ) + ξ(mZ)
2/2α ∼ 0.13, (18)

χ̈+ 3Hχ̇+ 6−1/2e−χ̃ϕ̇2 + V E
χ = 0, (19)

ϕ̈+ 3Hϕ̇− (2/3)1/2m−1
Pl χ̇ϕ̇+ V E

ϕ = 0, (20)

3H2m2
Pl =

1

2
χ̇2 +

1

2
e−χ̃ϕ̇2 + VE , (21)

− 2Ḣm2
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The Electroweak Symmetry Breaking and the Vacuum Metastability
of a Non-minimally Coupled Higgs in the Curvature-driven Inflation

Mahdi Torabian
School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran and

International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151, Trieste, Italy

The LHC-I measurements of the Higgs and top quark mass and the strong coupling constant
indicates that the electroweak vacuum is metastable. In fact, the Standard Model Higgs potential
is unbounded from below; the global minimum is orders of magnitude deeper than the local one
and the barrier separating the two is miniscule. Although quite long-lived on cosmological scales,
it is not clear how did the Higgs entrap in the local minimum stick to it during a rather high-scale
inflation. In this note it is shown that the curvature-driven inflation and a non-minimally coupled
Higgs to gravity solve the problems. Radiative breaking is also possible.....

Introduction The Higgs field is non-minimally cou-
pled to a general theory of gravity

S =

∫
d4x(−g)1/2

(1
2
m2
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✔ Higgs potential induces non-zero vev for Wely field



Starobinsky meets DBI in the Sky
I. INTRODUCTION

II. THE SETUP

A. The Action

The action in the Jordan frame takes the following form

S =

∫
d4x(−g)1/2

(1
2
m2

Plf(R,ϕ) + P (X,ϕ)
)
, (1)

where

f(R,ϕ) = (1 + 2ξm−2
Pl ϕ

2)R+ 8αm−2
Pl R

2, (2)

P (X,ϕ) = −f−1(ϕ)
[
(1− 2f(ϕ)X)1/2 − 1

]
− V (ϕ), (3)

and

X = −1

2
gµν∂µϕ∂νϕ, (4)

By a suitable Weyl transformation of the metric

gEµν = (1 + 2ξm−2
Pl ϕ

2 + 16αm−2
Pl R)gµν ≡ eχ̃gµν , (5)

one can move to the Einstein frame with the following action

S =
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d4x(−gE)
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PE(X,ϕ) = −e−2χ̃f−1(ϕ)
[
(1 + feχ̃gµνE ∂µϕ∂νϕ)

1/2 − 1
]
− e−2χ̃V (ϕ), (8)

and the canonically normalized dimensionfull Weyl scalar field is χ = (2/3)1/2mPlχ̃.

B. The Equations of Motion

We find the equations of motion for the metric, the DBI field and the Weyl field in a isotropic/homogenous
background

ds2 = −dt2 + a(t)dx, ϕ = ϕ(t), χ = χ(t). (9)

The boost factor in the homogenous background field is

γ =
(
1− f(ϕ)ϕ̇2eχ̃

)−1/2
. (10)

The equations of motion for the metric in a Friedman-Robertson-Walker background can be read as the Friedmann
equation

3H2m2
Pl =

1

2
χ̇2 + α−1m4

Pl(1− e−χ̃)2 + e−2χ̃V (ϕ)− e−2χ̃f−1(1− γ), (11)

and the time variation of the Hubble scale as follows

− 2Ḣm2
Pl = χ̇2 + e−2χ̃f−1(γ − γ−1) (12)

The equation of motion for the homogenous DBI field is

ϕ̈+ 3Hγ−2ϕ̇+ e−χ̃γ−3Vϕ(ϕ) +
1

2
(1− 3γ−2)ϕ̇χ̇+

1

2
e−χ̃f−2(ϕ)fϕ(ϕ)

(
1− 3γ−2 + 2γ−3

)
= 0, (13)

Finally the equation of motion for the Weyl field can be found as

χ̈+ 3Hχ̇+ (8/3)1/2α−1m3
Ple

−χ̃(1− e−χ̃)− 2e−2χ̃V (ϕ) +
1

2
e−2χ̃f−1(ϕ)

(
4− γ − 3γ−1

)
= 0, (14)
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 [Kaviani-MT, to appear]

✔ The effect of the higher-order correction and non-minimal coupling 
on DBI inflation.

✔ An interesting brane-inflation model in string theory.  
Not consistent with observation though: too much non-gaussianities.

✔ Scalar with non-minimal coupling and non-canonical kinetic term
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− 2Ḣm2
Pl = χ̇2 + e−2χ̃f−1(γ − γ−1) (12)

The equation of motion for the homogenous DBI field is

ϕ̈+ 3Hγ−2ϕ̇+ e−χ̃γ−3Vϕ(ϕ) +
1

2
(1− 3γ−2)ϕ̇χ̇+

1

2
e−χ̃f−2(ϕ)fϕ(ϕ)

(
1− 3γ−2 + 2γ−3

)
= 0, (13)

Finally the equation of motion for the Weyl field can be found as

χ̈+ 3Hχ̇+ (8/3)1/2α−1m3
Ple

−χ̃(1− e−χ̃)− 2e−2χ̃V (ϕ) +
1

2
e−2χ̃f−1(ϕ)

(
4− γ − 3γ−1

)
= 0, (14)

2

✔ A Weyl transformation from the Jordan to the Einstein frame:

✔ The Einstein frame action:
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m2
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)
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Pl ϕ

2)R+ αm−2
Pl R
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2
m2
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1

2
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, (6)
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8
α−1m4

Pl
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Pl(1− e−χ̃)2 + e−2χ̃V (ϕ)− e−2χ̃f−1(1− γ), (11)

and the time variation of the Hubble scale as follows

− 2Ḣm2
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✔ The dynamics on the FRW geometry

✔ A double-inflation model
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Summary

✔ The non-minimal coupling of scalar fields to an f(R) theory of 
gravity changes the behavior of both the scalar and the gravity sectors.  

✔ If the Standard Model is to be extrapolated to high scale, this 
coupling can stabilize the electroweak vacuum. Besides it explains 
why the Higgs ended up here.  
 
✔ All (non-minimally coupled) scalars get stabilized even if they have 
no potential in the Jordan frame.  
!
✔ This framework also changes the dynamics of scalars with non-
canonical kinetic terms (DBI, K-essence).
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A phenomenological study:
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