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Introduction to the Mordell-Weil

group

Points on an elliptic curve E = C/Λ, for Λ = 〈1, τ〉 are

additive as complex numbers.

Points with rational coordinates on E, over the field

K form an abelian group under this addition.

The Mordell-Weil theorem for elliptic curves states that

this group, E(K) is finitely generated, thus

E(K) = Zr ⊕ Zk1
⊕ · · · ⊕ Zki (1)

where the finite part is the torsion subgroup.
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Mordell-Weil theorem for elliptic

fibrations

For an elliptic fibration Y → B the Mordell-Weil group
is a group of sections. The group law is obtained by
fiberwise addition of points over each point in B.
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Mordell-Weil theorem for elliptic

fibrations

Example: The possible torsion subgroups for an elliptic
K3 surface are [Shimada ’00]

Zk (2 ≤ k ≤ 8), Z2⊕Z2k (1 ≤ k ≤ 3), Z3⊕Z3, Z4⊕Z4

No classification exists for higher dimensional Calabi-
Yau varieties.
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Torsion sections

Torsion sections are Zk-valued in E(K).

Among the 16 reflexive polygons, three admit torsion
sections as the restriction of ambient toric divisors to
the hypersurface. This way the Mordell-Weil groups Z2,
Z⊕ Z2 and Z3 are realized.

These sections are not torsion in homology, due to the
singularities of the hypersurface.

However, modulo linear combinations of resolution di-
visors they are torsion
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The Shioda map

The Shioda map is a map from the group of sections

E(K) to the group of divisors NS(Y ).

By construction, it gives a generator which does not lie

in the Cartan of any non-abelian gauge group, and has

one leg in the fiber.

Taking the Shioda map of a Zk-torsion section T gives

a trivial divisor class on the fourfold Y

T 7→ T − Z − K̄+
1

k

∑
aiFi ai ∈ Z . (2)

7



The Shioda map II

Triviality on the fourfold means that this class is not a

U(1)-generator. Using this we write

Ξk ≡ T − Z − K̄ = −
1

k

∑
aiFi ai ∈ Z . (3)

The class Ξk has zero intersection with all resolution di-

visors Fi ↔ the non-abelian gauge algebra is unchanged.

That is, the root Q and coroot Q∨ lattices are unaf-

fected by the presence of a torsion section.
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Non-abelian matter representations

At codimension two loci, where the fiber further degen-
erates, charged matter representations are found.

The charges of these states ↔ elements in the weight
lattice Λ.

The intersection pairing of Ξk = −1
k

∑
aiFi , ai ∈ Z

with the split curves over matter loci is integer.

That is, the divisor class Ξk is to be identified with an
extra coweight.
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Implications for gauge theories

Restricted matter spectrum. The only allowed repre-

sentations are the ones integer charged under Ξk.

The root and coroot lattices Q and Q∨ are sublattices of

the weight and coweight lattices Λ and Λ∨, respectively.

The center ZG and the fundamental group of the gauge

group G are given by

ZG =
Λ

Q
π1(G) =

Λ∨

Q∨
(4)
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Implications for gauge theories II

The presence of a torsion section refines the coweight
lattice, compared to the case without torsion.

This enhances the fundamental group of G, or equiva-
lently reduces the center of the gauge group.

Example: An A2 fibration without torsion gives rise to
the gauge group SU(3).

If there is an Z3-section, the gauge group is instead
SU(3)/Z3.

This constrains the matter spectrum to the represen-
tations invariant under the action of the center Z3.
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Outlook

We have considered fibrations based on the reflexive

polygons admitting torsion sections.

How to treat other torsion subgroups? Complete inter-

sections? Non-toric methods?

Phenomenology of torsion sections. Realizing the MSSM

with gauge group SU(3)× SU(2)× U(1)/Z6.
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