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this talk is based on ...

This talk is based on the paper T-duality revisited [arXiv:1310.4194],  
and on some work in progress [arXiv:1407.xxxx].



motivation

Moduli stabilization is one of the import tasks in string phenomenology.

These fluxes are understood
◾ moderately-well in the effective theory (supergravity in d=4), 
◾ but their string-theory origin is much less clear.

Non-geometric fluxes can help with that, as they contribute to the superpotential

W =

Z

X
⌦3 ^

⇣
F3 � iSH3 +Q · (J + iB)

⌘
.

Shelton, Taylor, Wecht - 2005



motivation

One example in string-theory is given by applying T-duality to tori with H-flux.
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motivation

One example in string-theory is given by applying T-duality to tori with H-flux.

three-torus with 
H-flux
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locally non-geometric background

non-geometric background

geometric background
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But, are there also other examples for non-geometric backgrounds?



motivation

◾ Construct new non-geometric backgrounds via T-dualitiesGoal ::

Idea :: ◾ Consider the three-sphere.
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t-duality :: sigma-model action

To study T-duality for three-spheres, a non-abelian version might be needed.



t-duality :: sigma-model action

Consider the sigma-model action for the NS-NS sector of the closed string

S = � 1
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This action is invariant under global transformations                            if�✏X
i = ✏↵ki↵(X)

Lk↵G = 0 , ◆k↵H = dv↵ , Lk↵� = 0 .

In general, the isometry algebra is non-abelian                               .[k↵, k� ]L = f↵�
� k�

de la Ossa, Quevedo - 1992

Giveon, Rocek - 1993


Alvarez, Alvarez-Gaume, [Barbon,] Lozano - 1993 & 1994

To study T-duality for three-spheres, a non-abelian version might be needed.



t-duality :: gauged action

Following Buscher’s procedure, the gauged sigma-model action is found as
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Hull, Spence - 1989 & 1991

Alvarez, Alvarez-Gaume, Barbon, Lozano - 1994

This gauging is subject to the following constraints

Lk[↵
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�v� , ◆k[↵
f��]

�v� =
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3
◆k↵◆k� ◆k�H .

EP - 2014



t-duality :: recovering the original model

The original model is recovered via the equations of motion for      �↵

0 = dA↵ � 1
2 f��

↵A� ^A� .

DXi = dXi + ki↵A
↵The gauge action can then be rewritten in terms of                                  as

bS =� 1

4⇡↵0

Z

@⌃

h
GijDXi ^ ?DXj + ↵0R� ? 1

i

� i

2⇡↵0

Z

⌃

1
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Ignoring technical details, one replaces                     and obtains the ungauged action.DXi ! dY i



t-duality

the following two slides are somewhat technical.Note ::



t-duality :: obtaining the dual model I

The dual model is obtained via the equations of motion for      A↵
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where, with                             ,M = G �DG�1D



t-duality :: obtaining the dual model II

An enlarged target-space can be parametrized by coordinates       and      .Xi �↵

The dual metric and field strength are obtained via a change of coordinates

T I
A =

✓
k 0
D 1

◆
, ǦAB = (T T Ǧ T )AB =

✓
0 0
0 G↵�

◆
,

ȞiBC = 0 .

ȞABC = ȞIJK T I
AT J

B T K
C ,

The enlarged metric     and field strength     have null-eigenvectors (and isometries)Ǧ Ȟ

ň↵ = k↵ +D↵� @⇠� .
◆ň↵Ǧ = 0 ,

◆ň↵Ȟ = 0 ,



t-duality :: summary

The T-duality transformation rules are obtained via Buscher’s procedure of
1. gauging isometries in the sigma-model action, 

2. integrating-out the gauge field, 

3. performing a change of coordinates.

Lk[↵
v�] = f↵�

�v� , ◆k[↵
f��]

�v� =
1

3
◆k↵◆k� ◆k�H .

The possible gaugings are restricted by (recall that                    )◆k↵H = dv↵
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torus :: setting

k1 =

0
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The Killing vectors (in the basis                   ) are abelian and can be chosen as{@1, @2, @3}

Consider a three-torus with H-flux specified as follows
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H = h dX1 ^ dX2 ^ dX3 , h 2 `�1
s Z .

Xi ' Xi + `s ,



torus :: one t-duality

Consider one T-duality along the Killing vector             .k1 = @1

The dual background is a twisted torus specified by

Ȟ = 0 .

ďs
2
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�
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,

The constraints for gauging are trivially satisfied.
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The constraints for gauging are trivially satisfied.
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torus :: one t-duality

Consider one T-duality along the Killing vector             .k1 = @1

The dual background is a twisted torus specified by

Ȟ = 0 .
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The constraints for gauging are trivially satisfied.



torus :: two t-dualities

Consider two collective T-dualities along               and              .k1 = @1 k2 = @2

v1 = h↵X2dX3 � h(1� ↵)X3dX2 ,

v2 = h(1 + ↵)X3dX1 + h↵X1dX3 .

The constraints on gauging the sigma-model imply (for            )↵ 2 R

The dual model is the T-fold background (no ambiguities in the collective approach)
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torus :: three t-dualities

Finally, consider three collective T-dualities along             ,               and              .k1 = @1 k2 = @2 k3 = @3

The constraints on gauging the sigma-model require the H-flux to be vanishing

◆k↵◆k� ◆k�H = 0 H = 0 .

The dual model is, as expected, characterized by

ďs
2
=

1

R2
1

�
d�1

�2
+

1

R2
2

�
d�2

�2
+

1

R2
3

�
d�3

�2
,

Ȟ = 0 .



torus :: summary

The formalism for T-duality introduced above works as expected.

three-torus with 
H-flux

1 T-duality

2 T-dualities

3 T-dualities

twisted torus

T-fold

torus with R ! 1/Rthree-torus with 
H=0
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sphere :: setting

Consider a three-sphere with H-flux, specified by

⌘ = 0 . . .
⇡

2
.
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2
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i
,

This model is conformal if                  .h = 4⇡2R2

The isometry algebra is                                   , and the Killing vectors satisfyso(4) = su(2)⇥ su(2)
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[K↵, K̃� ]L = 0 , |K↵|2 = |K̃↵|2 =
R2

4
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sphere :: setting

Consider a three-sphere with H-flux, specified by
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sphere :: one t-duality

Consider one T-duality along K1. In this case, all constraints are satisfied:

◾ constraints from gauging the sigma-model
◾ the matrix                           is invertibleG↵� = ki↵Gij k

j
�

X
X

The dual model, obtained via the above formalism, is characterized by

Ǧ =
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4
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i
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4

R2
⇠ ^ ?⇠ ,
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d⇠ = � h

16⇡2
sin ⌘̃ d⌘̃ ^ d⇣̃ .

This metric describes a circle fibered over a two-sphere.
Bouwknegt, Evslin, Mathai - 2003



sphere :: two t-dualities I

For two collective T-dualities, consider the commuting Killing vectors     and     .K1 K̃1

The dual model, via the above formalism, takes a form similar to the T-fold
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◾ constraints from gauging the sigma-model
◾ the matrix                           is invertibleG↵� = ki↵Gij k

j
�

X
The constraints for this model are almost satisfied:

X detG = R4

16 sin2(2⌘)



sphere :: two t-dualities II

But, when starting from a conformal model with                  , the background becomesh = 4⇡2R2

G = R2 (d⌘)2 +
1

R2

h
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2 + tan2 ⌘ (d�̃2)
2
i
,

H = 0 .

With dual dilaton                                      , this is again a conformal model.� = � log

�
R2

cos ⌘
�
+ �

Despite being non-compact, this background appears to be geometric.



sphere :: three t-dualities

For a non-abelian T-duality along     ,       and      , the constraints imply H=0.K1 K2 K3

Determining the dual model is still work in progress …



sphere :: summary

In the formalism for T-duality introduced above, for a conformal model one finds: 

three-sphere with 
H-flux

1 T-duality

2 T-dualities

3 T-dualities

S1 fibered over S2

seemingly geometric

work in progressthree-sphere with 
H=0
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summary

T-duality can be performed conveniently via an enlarged target space formalism

reproduces known results.

For two collective T-duality transformations,

three-torus with 
H-flux 

(not conformal)

2 T-dualities
non-geometric space

three-sphere with 
H-flux 

(conformal)

2 T-dualities geometric space

Thus, the origin of non-geometry remains unclear …


