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this talk is based on ...

—

This talk is based on the paper T-duality revisited [arXiv:1310.4194],
and on some work in progress |arXiv: 1407 .xxxx].



motivation

I

Moduli stabilization is one of the import tasks in string phenomenology.

Non-geometric fluxes can help with that, as they contribute to the superpotential

B Tr
W= 13!l F3" iSHs+ QalJ +iB) .
X
Shelton, Taylor, Wecht - 2005

These fluxes are understood

' moderately-well in the effective theory (supergravity in d=4),

! but their string-theory origin is much less clear.
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motivation

One example in string-theory is given by applying T-duality to tori with H-flux.
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One example in string-theory is given by applying T-duality to tori with H-flux.

three-torus with
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> geometric background
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But, are there also other examples for non-geometric backgrounds?



motivation

I

Goal :: I Construct new non-geometric backgrounds via T-dualities
T, T T, b
Hope ——— fuS —2— Q. « >y RAbe

|dea :: I Consider the three-sphere.
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t-duality :: sigma-model action

—

To study T-duality for three-spheres, a non-abelian version might be needed.
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t-duality :: sigma-model action

To study T-duality for three-spheres, a non-abelian version might be needed.

de la Ossa, Quevedo - 1992
Giveon, Rocek - 1993
Alvarez, Alvarez-Gaume, [Barbon,] Lozano - 1993 & 1994

Consider the sigma-model action for the NS-NS sector of the closed string
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This action is invariant under global transformations !/ X' = " k! (X) if
L, G=0, ve, H = dv,, Ly ¢=0.

In general, the isometry algebra is non-abelian [kq, ksl = fap™ k- .



t-duality :: gauged action

Following Buscher’s procedure, the gauged sigma-model action is found as
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Hull, Spence - 1989 & 1991
Alvarez, Alvarez-Gaume, Barbon, Lozano - 1994

This gauging is subject to the following constraints
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t-duality :: recovering the original model

The original model is recovered via the equations of motion for ! 1

0=dA ! 1fu A " A",

The gauge action can then be rewritten in terms of DX* = dX"* + k', A“ as
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lgnoring technical details, one replaces DX ' | dY' and obtains the ungauged action.



t-duality

Note :: the following two slides are somewhat technical.



t-duality :: obtaining the dual model |

The dual model is obtained via the equations of motion for A’
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The action of the dual sigma-model is found by integrating out A' and reads
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t-duality :: obtaining the dual model |

An enlarged target-space can be parametrized by coordinates X' and ! ! .

The enlarged metric @ and field strength B have null-eigenvectors (and isometries)
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The dual metric and field strength are obtained via a change of coordinates
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t-duality :: summary

I

The T-duality transformation rules are obtained via Buscher’s procedure of

1. gauging isometries in the sigma-model action,
2. integrating-out the gauge field,

3. performing a change of coordinates.

The possible gaugings are restricted by (recall that Iy, H = dv; )

1
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torus :: setting

I

Consider a three-torus with H-flux specified as follows
ds®> = R? (dX")* + R} (dX?)* + R% (dX?)?, X1 Xi4d,

H=hdX'NdX?* NdX?, hel'7Z.

The Killing vectors (in the basis {!1,!,,! 3} ) are abelian and can be chosen as



torus :: one t-duality

—

Consider one T-duality along the Killing vector k; = 4.

The constraints for gauging are trivially satisfied.

The dual background is a twisted torus specified by

g, .. o o
B = = dx+ hX?ax® '+ R ax? T+ B3 dx® Y
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torus :: one t-duality

The constraints for gauging are trivially satisfied.

Lk[!_V!_] = fl HEV;,e,s
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torus :: one t-duality

—

Consider one T-duality along the Killing vector k; = 4.

The constraints for gauging are trivially satisfied.

The dual background is a twisted torus specified by

g, .. o o
B = = dx+ hX?ax® '+ R ax? T+ B3 dx® Y



torus :: two t-dualities

—

Consider two collective T-dualities along k; = 7 and k, = I 5.

The constraints on gauging the sigma-model imply (for | I R)

vi = h!X 2dX3! h(@! 1)X3dX?,
Vo= h(1+ 1)X3dXt+ htX tdXx3.

The dual model is the T-fold background (no ambiguities in the collective approach)
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torus :: three t-dualities

I

Finally, consider three collective T-dualities along ky = 11, ko = 15, and k3 = ! 3.

The constraints on gauging the sigma-model require the H-flux to be vanishing

!ka!kﬁ!kfyH =0 — H=0.

The dual model is, as expected, characterized by

o 2 145, 2 1!
bk == d; + =
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N =0.



torus :: summary

I

The formalism for T-duality introduced above works as expected.

three-torus with 1 T'duallty > tW|Sted torus
H-flux
2 T-dualities R T-fold
fhree-torus with 0 Tdualles torus with R | 1/R
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sphere :: setting

Consider a three-sphere with H-flux, specified by

ds* = R* {sin2 n (d¢y)? + cos® n (d¢a)? + (dn)Q} : C1,2=0...2m,

Hz%sin"cos"d#l! di 1 d" 1 =0...

N |

This model is conformal if h = 47%R>.

The isometry algebra is so(4) = su(2) x su(2), and the Killing vectors satisfy
(Wlth Q, 67 8 S {17 27 3})

Ky KT = T P Ky,
KiK. =0, K 2= |K [P= —.

Ky KoL =10 PRy,



sphere :: setting
o g
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sphere :: one t-duality

—

Consider one T-duality along K. In this case, all constraints are satisfied:

! constraints from gauging the sigma-model |

| the matrix G- = ki Gj k! is invertible !

The dual model, obtained via the above formalism, is characterized by

= R (dE)2 +Sin2(5)(d)2 + — #1 $#
o (! | 7 #!

dl =1 sin#de" d$

16" 2

M=sintd™! d&! #,

This metric describes a circle fibered over a two-sphere.
Bouwknegt, Evslin, Mathai - 2003



sphere :: two t-dualities |

—

For two collective T-dualities, consider the commuting Killing vectors K; and Kj.

The constraints for this model are almost satisfied:
I constraints from gauging the sigma-model |

| the matrix G- = ki Gj k! is invertible X detG= R sin?(2!)

The dual model, via the above formalism, takes a form similar to the T-fold

’ 1 d*)? 1 d;)?
sin“! + ;7= co%! Cog! + zorr  ohzw

=1 sha2 21 164°R4 sin! cos

, dl tdEt d
16#2R4 sin’! + h2 cog !

2




sphere :: two t-dualities |l

—

But, when starting from a conformal model with h = 41 ?R?, the background becomes

— 1 :
G=R*(d!)* + 5 (d=1)* +tan! (d*2)° |
H=0.

With dual dilaton ¢ = —log(R?* cosn) + ¢, this is again a conformal model.

Despite being non-compact, this background appears to be geometric.



sphere :: three t-dualities

—

For a non-abelian T-duality along K1, K, and K3, the constraints imply H=0.

Determining the dual model is still work in progress ...



sphere :: summary

—

In the formalism for T-duality introduced above, for a conformal model one finds:

three-sphere with 1 T-dualit ,
o ﬁﬁﬂjxe N LN St fibered over S?
2 T-dualities . .
> seemingly geomettric
three-sphere with 3 I-dualities .
H=0 work In progress
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summary

—

T-duality can be performed conveniently via an enlarged target space formalism

—  reproduces known results.

For two collective T-duality transformations,

three-torus with 2 T-dualities

H-flux > non-geometric space
(not conformal)

three-sphere with 2 T-dualities

H-flux > geometric space
(conformal)

Thus, the origin of non-geometry remains unclear ...



