Hierarchy from the product landscape

Zheng Sun

Sichuan University, Chengdu, China

String Phenomenology 2014, ICTP, 7 July 2014

Lv, Sun, Wu, [1405.0440] and more.
Sumitomo, Tye, [1204.5177], [1209.5086], [1211.6858].
Outline

Hierarchy problems from vacuum distribution point of view

The product landscape and preferred scales

Efficiency and practicality
Outline

Hierarchy problems from vacuum distribution point of view

The product landscape and preferred scales

Efficiency and practicality
Hierarchy and naturalness

What is Hierarchy?

- A fundamental theory gives everything naturally.
- Dimensionless parameters have natural values of order 1.
- Parameters with mass dimensions have natural values around the fundamental mass scale.
- But their observed values may be too small.
- e.g., \(m_{\text{Higgs}} \ll m_{\text{bare}}, \Lambda \ll m_{\text{SUSY}} \ll m_{\text{Planck}} \).

Relation to fine tuning

- Hierarchy: Large \(\rightarrow \) small.
- Symmetries may help to get 0, but not a small value.
- Canceling large values \(\Rightarrow \) a small value needs fine tuning.
- e.g., \(m_{\text{Higgs}} \Leftarrow \) tuning of \(m_{\text{bare}} \) and quantum corrections.
Stabilization and Selection

Tuning or stabilization?

- Free parameters are bad for fundamentalists.
- Parameters fixed \rightarrow dynamical fields stabilized at low energy.
- Eventually, parameters are fixed by symmetries, topological invariants, quantizations, etc. (eg. flux compactification)
- Parameters fixed OK, but why at small values (if possible)?

The string landscape (anthropic or not)

- Metastable vacua, different physics \leftarrow string theory or others.
- e.g., flux compactification, Calabi-Yau’s, quantized fluxes \rightarrow low energy superpotentials, moduli stabilization, vacua.
- We hope there is at least one vacuum with the correct world.
- Hierarchy is rare in a trivial distribution (flat or smooth) \Rightarrow possibly no “correct” vacuum \Rightarrow hierarchy problem persists.
Outline

Hierarchy problems from vacuum distribution point of view

The product landscape and preferred scales

Efficiency and practicality
Ways to hierarchy

Non-trivial distributions

▶ **Exponential factors**: Order 1 on powers \rightarrow exponentially small.
▶ e.g., dynamical SUSY breaking $F = e^{-8\pi^2/g^2}$.
▶ e.g., Randall-Sundrum models $m = e^{-ky} m_0$.

More hierarchy from original hierarchy

▶ **Transfer and accumulation of hierarchy**.
▶ e.g., the seesaw mechanism $m = m_0^2/M$.
▶ e.g., large extra dimensions, $M_{\text{Planck}}^2 = M_{\text{Planck}(4+n)}^{2+n} R^n$.
▶ e.g., loop factors $1/(16\pi^2) < 1$, many loops.

New attempt: The product landscape

▶ **Multiplying random variables** \rightarrow non-trivial distributions.
▶ Hierarchy may be preferred by distribution peaks.
The distribution of multiplying random variables

The distribution of $z = x_1 \cdots x_n$

- x_1, \ldots, x_n with distribution $P(x_1), \ldots, P(x_n)$,

$$P(z) = \int P(x_1) \cdots P(x_n) \delta(z - x_1 \cdots x_n) dx_1 \cdots dx_n$$

$$= \int P(x_1) \cdots P(x_{n-1}) \frac{P(z/(x_1 \cdots x_{n-1}))}{x_1 \cdots x_{n-1}} dx_1 \cdots dx_{n-1}.$$

- $P(x_i) = 1$ for $x_i \in (0, 1) \Rightarrow P(z) = (- \log z)^{n-1}/(n-1)!$.

Other distributions (assuming $P(x_i) = 1$ for $x_i \in (0, 1)$)

- $z = x_1^n \Rightarrow P(z) = z^{-1+1/n}/n.$
- $z = x_1^n \cdots x_m^n \Rightarrow P(z) = z^{-1+1/n}(- \log z)^{m-1}/(n^m(m-1)!).$
- $z = x_1^m x_2^n \Rightarrow P(z) = (z^{-1+1/n} - z^{-1+1/m})/(n-m).$
Can we get hierarchy?

The distribution of scales

- All previous $P(z)$'s are singular at the origin \Rightarrow lowest values seem to be preferred in the distribution.

- We must look at logarithmic distributions, e.g. $(10^{-11}, 10^{-9})$ versus $(10^{-2}, 1)$ to compare 10^{-10} versus 10^{-1}.

- $P(z) = z^{-1}$ is the actual distribution uniform on all scales.

- All previous $P(z)$'s are less singular than z^{-1}, so they have preferred scales (which are not the lowest).

The preferred scale

- $P(z)dz = P_{\log}(z)d(\log z) \Rightarrow P_{\log}(z) = zP(z)$.

- The distribution peak of $P_{\log}(z) \Leftarrow \partial_z P_{\log}(z) = 0$.

- e.g., for $z = x_1 \cdots x_n$, the peak is at $z_0 = e^{1-n}$.

- $x_i \in (0, 1)$ flat, $\bar{x}_i = 1/2$, excluding this effect, $z_0' = e^{1-n}2^n$.
Distribution plots

Plots on linear scale

\[z = x_1 \cdots x_n, \quad P(x_i) = 1 \text{ for } x_i \in (0, 1), \quad P(z) \text{ is singular:} \]

\[z = x_1 \cdots x_n, \quad P(x_i) = 1 \text{ for } x_i \in (0, 1), \quad P(z) \text{ is singular:} \]
Distribution plots (2)

Plots on logarithmic scale

\(P_{\log}(z) = zP(z) \) (the peak is at \(z = e^{1-n} \)):
Distribution plots (3)

Plots on logarithmic scale

- Rescaling z to $\bar{z} = 1$, $P_{\log}(z)$ (the peak is at $z = e^{1-n2^n}$):

![Graph showing distribution plots on logarithmic scale with different values of n from 2 to 8. Each line represents a different value of n, and the peak of the distribution shifts as n increases.]
Outline

Hierarchy problems from vacuum distribution point of view

The product landscape and preferred scales

Efficiency and practicality
Contributions to hierarchy

Effects purely from the product landscape

- $z_0' = e^{1-n2^n}$ is the “pure effect” from the product landscape.
- $n \sim 10$ for $z_0' = 0.1$, quite slow to generate hierarchy.
- If $\Lambda/M_{\text{Planck}} \sim 10^{-122}$ comes from this exclusively, $n \sim 1000$.
- Physical observables must be expressed as a single term with n factors, quite uncommon for model building.

Other effects

- $\bar{x}_i = 1/2 \iff$ flat distribution in $(0, 1)$.
- Similar small parameters are (almost) natural in any EFT, e.g., field values should be smaller than Λ_{cutoff}.
- For IIB flux vacua, $r = \Lambda_{\text{EFT}}/\Lambda_{\text{String}} \lesssim 1 \Rightarrow \bar{x}_i \sim r \lesssim 1$.
- Accumulation of small hierarchies $\Rightarrow z_0' \sim r^n \ll 1$ for large n.
- Hierarchy from both effects.
Application

Multi-moduli IIB flux vacua

- Large volume scenario, SUSY with $W_0 \neq 0 \Rightarrow \Lambda \neq 0$:

$$W_0 = -\frac{2(c_1 + sc_2) \prod_{i=1}^{N_{CS}} (1 - sr)}{\prod_{i=1}^{N_{CS}} (1 + sr)}.$$

- $\Lambda/M_{Planck} \sim 10^{-122}$ requires $N_{CS} \sim 200$, common in CY data.
- The product landscape contributes $\sim 10^{-27}$, the rest from other effects (accumulation, constraints from stability, etc.).

Summary

- Hierarchy \leftarrow distributions, predictions \leftarrow logarithmic plots.
- $\sim e^{1-n}2^n \leftarrow$ the product landscape.
- Combining other effects, practical model building.
- **END**