Heterotic Supergravity, Moduli, and Connections

Eirik Svanes (University of Oxford)
based on work together with Xenia de la Ossa

July 7th, String Phenomenology 2014, ICTP, Trieste
Introduction
In this talk, I will discuss Heterotic Supergravity at $\mathcal{O}(\alpha')$, often referred to as the Strominger System.
In this talk, I will discuss Heterotic Supergravity at $\mathcal{O}(\alpha')$, often referred to as the Strominger System.

- I will show how the Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle $\mathcal{Q} \to X$.
In this talk, I will discuss Heterotic Supergravity at $\mathcal{O}(\alpha')$, often referred to as the Strominger System.

- I will show how the Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle $Q \to X$.
- Studying deformations, or "moduli" of holomorphic structures is a well known mathematical enterprise.
In this talk, I will discuss Heterotic Supergravity at $O(\alpha')$, often referred to as the Strominger System.

- I will show how the Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle $Q \to X$.

- Studying deformations, or "moduli" of holomorphic structures is a well known mathematical enterprise.

- Easy to find the first order deformation space $T\mathcal{M}$, computed as a cohomology $H^{(0,1)}_{\overline{D}}(Q)$. Obstructions lie in $H^{(0,2)}_{\overline{D}}(Q)$, etc.
In this talk, I will discuss Heterotic Supergravity at $\mathcal{O}(\alpha')$, often referred to as the Strominger System.

- I will show how the Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle $Q \rightarrow X$.

- Studying deformations, or ”moduli” of holomorphic structures is a well known mathematical enterprise.

- Easy to find the first order deformation space $T\mathcal{M}$, computed as a cohomology $H^{(0,1)}_D(Q)$. Obstructions lie in $H^{(0,2)}_D(Q)$, etc.

- Gives a natural candidate for the Kähler potential and Kähler metric on $T\mathcal{M}$.
In this talk, I will discuss Heterotic Supergravity at $\mathcal{O}(\alpha')$, often referred to as the Strominger System.

- I will show how the Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle $Q \to X$.

- Studying deformations, or "moduli" of holomorphic structures is a well-known mathematical enterprise.

- Easy to find the first order deformation space $T\mathcal{M}$, computed as a cohomology $H^{(0,1)}_D(Q)$. Obstructions lie in $H^{(0,2)}_D(Q)$, etc.

- Gives a natural candidate for the Kähler potential and Kähler metric on $T\mathcal{M}$.

See also [Anderson, Gray, Sharpe 2014], and [Garcia-Fernandez 2013, Baraglia, Hekmati 2013] where similar structures were studied from the perspective of heterotic generalised geometry and Courant algebroids.
Maximally symmetric compactification:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]
Maximally symmetric compactification:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

Supersymmetry + Equations of Motion requires:

- \(X \) is complex, with a \textit{heterotic} \(SU(3) \)-structure.
Maximally symmetric compactification:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

Supersymmetry + Equations of Motion requires:

- \(X \) is complex, with a heterotic \(SU(3) \)-structure.
- There is a holomorphic bundle \(V \to X \), with structure group contained in \(E_8 \times E_8 \), and satisfying the Yang-Mills condition:

\[\omega \lrcorner F = 0. \]
Maximally symmetric compactification:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

Supersymmetry + Equations of Motion requires:

- \(X \) is complex, with a heterotic \(SU(3) \)-structure.
- There is a holomorphic bundle \(V \rightarrow X \), with structure group contained in \(E_8 \times E_8 \), and satisfying the Yang-Mills condition:

\[\omega \lrcorner F = 0. \]

- There is a holomorphic connection \(\nabla \) on \(TX \) whose curvature \(R \) also satisfies the Yang-Mills condition [Ivanov 2009].
Holomorphic Structures
Deformations of Complex Structure

Introduction

Holomorphic Structures

Holomorphic Bundle
Holomorphic Tangent Bundle
Conditions from Bianchi Identity

Conclusions
The heterotic $SU(3)$-structure requires the existence of a holomorphic three-form Ω,

$$d\Omega = 0,$$

from which a holomorphic structure J can be defined.
The heterotic $SU(3)$-structure requires the existence of a holomorphic three-form Ω,
\[d\Omega = 0 , \]
from which a holomorphic structure J can be defined. Modulo diffeomorphisms, deformations of Ω are elements of
\[H_d^{(2,1)}(X) \subseteq H_{\bar{\partial}}^{(2,1)}(X) = H^{(0,1)}(TX) . \]
The heterotic $SU(3)$-structure requires the existence of a holomorphic three-form Ω,

$$d\Omega = 0,$$

from which a holomorphic structure J can be defined. Modulo diffeomorphisms, deformations of Ω are elements of

$$H^{(2,1)}_d(X) \subseteq H^{\partial(2,1)}(X) = H^{(0,1)}(TX).$$

Note then that not all deformations of J (elements of $H^{(0,1)}(TX)$) give rise to deformations of Ω.
The heterotic $SU(3)$-structure requires the existence of a holomorphic three-form Ω,

$$d\Omega = 0,$$

from which a holomorphic structure J can be defined. Modulo diffeomorphisms, deformations of Ω are elements of $H^{2,1}(X) \subseteq H^{0,1}(TX)$. Note then that not all deformations of J (elements of $H^{0,1}(TX)$) give rise to deformations of Ω.

We impose the condition $H^{0,1}(X) = 0$. This ensures equality of the cohomologies, and also ensures a well-defined dilaton.
The heterotic $SU(3)$-structure requires the existence of a holomorphic three-form Ω,

$$d\Omega = 0,$$

from which a holomorphic structure J can be defined. Modulo diffeomorphisms, deformations of Ω are elements of

$$H_d^{(2,1)}(X) \subseteq H^{(2,1)}(\mathcal{O}) = H^{(0,1)}(TX).$$

Note then that not all deformations of J (elements of $H^{(0,1)}(TX)$) give rise to deformations of Ω.

We impose the condition $H^{(0,1)}(X) = 0$. This ensures equality of the cohomologies, and also ensures a well-defined dilaton.

This condition also implies that $H^{(0,2)}(X) = 0$, which we will need later when considering the full Strominger system.
The Holomorphic bundle has holomorphic structure $\overline{\partial}_A$, while X has holomorphic Structure $\overline{\partial}$,

$$\overline{\partial}_A^2 = \overline{\partial}^2 = 0.$$
The Holomorphic bundle has holomorphic structure $\overline{\partial}_A$, while X has holomorphic Structure $\overline{\partial}$,

$$\overline{\partial}_A^2 = \overline{\partial}^2 = 0.$$

Want to study simultaneous deformations.
The Holomorphic bundle has holomorphic structure $\overline{\partial}_A$, while X has holomorphic Structure $\overline{\partial}$,

$$\overline{\partial}^2 = \partial^2 = 0.$$

Want to study simultaneous deformations. Atiyah: Equivalent to studying deformations of holomorphic structure $\overline{\partial}_1$ on extension Q_1

$$0 \rightarrow \text{End}(V) \rightarrow Q_1 \rightarrow TX \rightarrow 0 \quad (*)$$

$$\overline{\partial}_1 = \overline{\partial} + F,$$

where $\overline{\partial}$ is the holomorphic structure on the individual bundles, and $F = F \in \Omega^{(0,1)}(\text{End}(V) \otimes T^*X)$.
The Holomorphic bundle has holomorphic structure $\overline{\partial}_A$, while X has holomorphic Structure $\overline{\partial}$,

$$\overline{\partial}_A^2 = \overline{\partial}^2 = 0.$$

Want to study simultaneous deformations. Atiyah: Equivalent to studying deformations of holomorphic structure $\overline{\partial}_1$ on extension Q_1

$$0 \rightarrow \text{End}(V) \rightarrow Q_1 \rightarrow TX \rightarrow 0 \quad (\ast)$$

$$\overline{\partial}_1 = \overline{\partial} + \mathcal{F},$$

where $\overline{\partial}$ is the holomorphic structure on the individual bundles, and $\mathcal{F} = F \in \Omega^{(0,1)}(\text{End}(V) \otimes T^*X)$.

Note: $\overline{\partial}_1^2 = 0 \iff \overline{\partial}\mathcal{F} = 0 \Rightarrow F \in H^{(0,1)}(\text{End}(V) \otimes T^*X)$, i.e. \mathcal{F} is the field strength of some bundle (the Atiyah class).
The Holomorphic bundle has holomorphic structure $\overline{\partial}_A$, while X has holomorphic Structure $\overline{\partial}$,
\[\overline{\partial}^2 = \overline{\partial}^2 = 0. \]

Want to study simultaneous deformations. Atiyah: Equivalent to studying deformations of holomorphic structure $\overline{\partial}_1$ on extension Q_1

\[0 \rightarrow \text{End}(V) \rightarrow Q_1 \rightarrow TX \rightarrow 0 \quad (\ast) \]

\[\overline{\partial}_1 = \overline{\partial} + F, \]

where $\overline{\partial}$ is the holomorphic structure on the individual bundles, and $F = F \in \Omega^{(0,1)}(\text{End}(V) \otimes T^*X)$.

Note: $\overline{\partial}_1^2 = 0 \Leftrightarrow \overline{\partial}F = 0 \Rightarrow F \in H^{(0,1)}(\text{End}(V) \otimes T^*X)$, i.e. F is the field strength of some bundle (the Atiyah class).

It follows that F defines a map between cohomologies:

\[F : H^{(q,p)}(TX) \rightarrow H^{(q,p+1)}(\text{End}(V)). \]
$H^{(0,1)}_{\d_{1}}(Q_{1})$ then computes simultaneous deformations of $\bar{\partial}_{A}$ and $\bar{\partial}$ [Atiyah 1957].
\[H^{(0,1)}_{\overline{\partial}_1}(Q_1) \] then computes simultaneous deformations of \(\overline{\partial}_A \) and \(\overline{\partial} \) [Atiyah 1957]. Computed by long exact sequence of \((\ast) \) [Anderson, Gray, Lukas, Ovrut 2010]:
\[H_{\overline{\partial}_1}^{(0,1)}(Q_1) \] then computes simultaneous deformations of \(\overline{\partial}_A \) and \(\overline{\partial} \) [Atiyah 1957]. Computed by long exact sequence of \((\ast) \) [Anderson, Gray, Lukas, Ovrut 2010]:

\[
0 \to H^{(0,1)}(\text{End } V) \to H^{(0,1)}(Q_1) \to H^{(0,1)}(TX) \xrightarrow{\mathcal{F}} H^{(0,2)}(\text{End } V) \to \ldots ,
\]
$H^{(0,1)}_{\overline{\partial}_1}(Q_1)$ then computes simultaneous deformations of $\overline{\partial}_A$ and $\overline{\partial}$ [Atiyah 1957]. Computed by long exact sequence of (\ast) [Anderson, Gray, Lukas, Ovrut 2010]:

$$0 \rightarrow H^{(0,1)}(\text{End } V) \rightarrow H^{(0,1)}(Q_1) \rightarrow H^{(0,1)}(TX) \xrightarrow{\mathcal{F}} H^{(0,2)}(\text{End } V) \rightarrow \ldots,$$

where we have set $H^0(TX) = 0$, as TX is stable of degree zero ($\omega \cdot R = 0$).
Holomorphic Bundle

$H^{(0,1)}_{\bar{\partial}_1}(Q_1)$ then computes simultaneous deformations of $\bar{\partial}_A$ and $\bar{\partial}$ [Atiyah 1957]. Computed by long exact sequence of (\ast) [Anderson, Gray, Lukas, Ovrut 2010]:

$$0 \rightarrow H^{(0,1)}(\text{End } V) \rightarrow H^{(0,1)}(Q_1) \rightarrow H^{(0,1)}(TX) \xrightarrow{F} H^{(0,2)}(\text{End } V) \rightarrow \cdots,$$

where we have set $H^0(TX) = 0$, as TX is stable of degree zero ($\omega \cdot R = 0$).

By exactness, we find

$$H^{(0,1)}(Q_1) \cong H^{(0,1)}(\text{End } V) \oplus \ker(F),$$

where $\ker(F) \subseteq H^{(0,1)}(TX)$ are cplx. structure moduli, deformations $\bar{\partial}$, and $H^{(0,1)}(\text{End } V)$ are bundle moduli.
Holomorphic Bundle

$H^\mathfrak{(0,1)}_{\bar{\partial}_1} (Q_1)$ then computes simultaneous deformations of $\bar{\partial}_A$ and $\bar{\partial}$ [Atiyah 1957). Computed by long exact sequence of \ast [Anderson, Gray, Lukas, Ovrut 2010]:

$$0 \to H^{(0,1)}(\text{End } V) \to H^{(0,1)}(Q_1) \to H^{(0,1)}(TX) \xrightarrow{\mathcal{F}} H^{(0,2)}(\text{End } V) \to \ldots ,$$

where we have set $H^0(TX) = 0$, as TX is stable of degree zero ($\omega \cdot R = 0$).

By exactness, we find

$$H^{(0,1)}(Q_1) \cong H^{(0,1)}(\text{End } V) \oplus \ker(\mathcal{F}) ,$$

where $\ker(\mathcal{F}) \subseteq H^{(0,1)}(TX)$ are cplx. structure moduli, deformations $\bar{\partial}$, and $H^{(0,1)}(\text{End } V)$ are bundle moduli.

Allowed complex structure moduli $= \ker(\mathcal{F})$ can be derived from F-terms of a Gukov-Vafa-Witten type superpotential [Anderson et al 2010]:

$$W = \int_X (H + i \omega) \wedge \Omega = \int_X \left(dB + \frac{\alpha'}{4} (\omega^A_{CS} - \omega^\nabla_{CS}) + i \omega \right) \wedge \Omega .$$

Heterotic Supergravity and Moduli – 8
Compatibility with the equations of motion requires the existence of a holomorphic Yang-Mills connection $\overline{\partial} \nabla$ on TX [Ivanov 2009].
Compatibility with the equations of motion requires the existence of a holomorphic Yang-Mills connection $\overline{\partial}_\nabla$ on TX [Ivanov 2009]. Extend Q_1 to include this structure:

$$0 \rightarrow \text{End}(TX) \rightarrow Q_2 \rightarrow Q_1 \rightarrow 0 \quad (*)$$

$$\overline{\partial}_2 = \overline{\partial}_1 + R.$$
Compatibility with the equations of motion requires the existence of a holomorphic Yang-Mills connection $\overline{\partial}_{\nabla}$ on TX [Ivanov 2009].

Extend Q_1 to include this structure:

$$0 \rightarrow \text{End}(TX) \rightarrow Q_2 \rightarrow Q_1 \rightarrow 0 \quad (\ast)$$

$$\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{R}.$$

- Atiyah class: $\mathcal{R} = R \in \Omega^{(0,1)}(\text{End}(TX) \otimes T^*X)$. $\overline{\partial}_2^2 = 0$ iff $\overline{\partial}_1 R = 0$.

Compatibility with the equations of motion requires the existence of a holomorphic Yang-Mills connection $\overline{\partial}_\nabla$ on TX [Ivanov 2009].

Extend Q_1 to include this structure:

$$0 \to \text{End}(TX) \to Q_2 \to Q_1 \to 0 \quad (*)$$

$$\overline{\partial}_2 = \overline{\partial}_1 + R.$$

- Atiyah class: $R = R \in \Omega^{(0,1)}(\text{End}(TX) \otimes T^*X).$ $\overline{\partial}_2^2 = 0$ iff $\overline{\partial}R = 0.$

- $H_{\overline{\partial}_2}^{(0,1)}(Q_2)$ computes simultaneous deformations of $\overline{\partial}_\nabla$ and $\overline{\partial}_1.$ Computed by long exact sequence of $(*)$.

Holomorphic Tangent Bundle
Compatibility with the equations of motion requires the existence of a holomorphic Yang-Mills connection $\bar{\partial}_\nabla$ on TX [Ivanov 2009].

Extend Q_1 to include this structure:

$$0 \rightarrow \text{End}(TX) \rightarrow Q_2 \rightarrow Q_1 \rightarrow 0 \quad (\ast)$$

$$\bar{\partial}_2 = \bar{\partial}_1 + \mathcal{R}.$$

- Atiyah class: $\mathcal{R} = R \in \Omega^{(0,1)}(\text{End}(TX) \otimes T^*X)$. $\bar{\partial}_2^2 = 0$ iff $\bar{\partial}R = 0$.
- $H^{(0,1)}_{\bar{\partial}_2}(Q_2)$ computes simultaneous deformations of $\bar{\partial}_\nabla$ and $\bar{\partial}_1$. Computed by long exact sequence of \ast.

- Note: "Moduli" related to deformations of $\bar{\partial}_\nabla$ are not physical. Correspond to field [Sen 1986; de la Ossa, Svanes 2014].
Conditions from Bianchi Identity

Introduction

Holomorphic Structures
- Holomorphic Bundle
- Holomorphic Tangent Bundle
- Conditions from Bianchi Identity

Conclusions
We now want to include the heterotic Bianchi Identity (from heterotic anomaly)

\[dH = 2\partial \partial^\dagger \rho = \frac{\alpha'}{4} \left(\text{tr} F^2 - \text{tr} R^2 \right) \ast, \]

where we have set \(\rho = \ast \omega \), and chosen a gauge where \(d\phi = 0 \).
We now want to include the heterotic Bianchi Identity (from heterotic anomaly)
\[dH = 2 \partial \partial^\dagger \rho = \frac{\alpha'}{4} \left(\text{tr} F^2 - \text{tr} R^2 \right) \quad (\ast) , \]
where we have set \(\rho = \ast \omega \), and chosen a gauge where \(d\phi = 0 \).
Note that as connections, \(\mathcal{F} \) and \(\mathcal{R} \) also act naturally as
\[\mathcal{F}, \mathcal{R} : H^{(q,p)}(\text{End}(\ast)) \rightarrow H^{(q,p+1)}(T^* X) . \]
We now want to include the heterotic Bianchi Identity (from heterotic anomaly)

\[dH = 2 \overline{\partial \partial^\dagger} \rho = \frac{\alpha'}{4} \left(\text{tr}F^2 - \text{tr}R^2 \right) \quad (\ast) , \]

where we have set \(\rho = \ast \omega \), and chosen a gauge where \(d\phi = 0 \).

Note that as connections, \(\mathcal{F} \) and \(\mathcal{R} \) also act naturally as

\[\mathcal{F}, \mathcal{R} : H^{(q,p)}(\text{End}(\ast)) \rightarrow H^{(q,p+1)}(T^*X) . \]

Natural to add \(T^*X \), and consider a holomorphic structure

\[D = \overline{\partial} + \mathcal{F} + \mathcal{R} + h \]

on \(Q = T^*X \oplus \text{End}(TX) \oplus \text{End}(V) \oplus TX \). Here \(h \in \Omega^{(0,1)}(T^*X \otimes T^*X) \).
We now want to include the heterotic Bianchi Identity (from heterotic anomaly)

\[dH = 2 \partial \partial^\dagger \rho = \frac{\alpha'}{4} (\text{tr} F^2 - \text{tr} R^2) \quad (\ast) , \]

where we have set \(\rho = *\omega \), and chosen a gauge where \(d\phi = 0 \). Note that as connections, \(\mathcal{F} \) and \(\mathcal{R} \) also act naturally as

\[\mathcal{F}, \mathcal{R} : H^{(q,p)}(\text{End}(\ast)) \to H^{(q,p+1)}(T^* X) . \]

Natural to add \(T^* X \), and consider a holomorphic structure

\[\overline{D} = \overline{\partial} + \mathcal{F} + \mathcal{R} + h \]

on \(Q = T^* X \oplus \text{End}(TX) \oplus \text{End}(V) \oplus TX \). Here \(h \in \Omega^{(0,1)}(T^* X \otimes T^* X) \).

Note: \(\overline{D}^2 = 0 \iff \mathcal{F} \wedge \mathcal{F} + \mathcal{R} \wedge \mathcal{R} + \overline{\partial} h = 0 \).
We now want to include the heterotic Bianchi Identity (from heterotic anomaly)

\[dH = 2\partial\partial^\dagger \rho = \frac{\alpha'}{4} (\text{tr} F^2 - \text{tr} R^2) \quad (\star) \]

where we have set \(\rho = \ast \omega \), and chosen a gauge where \(d\phi = 0 \).

Note that as connections, \(F \) and \(R \) also act naturally as

\[F, R : H^{(q,p)}(\text{End}(\ast)) \rightarrow H^{(q,p+1)}(T^* X) \).

Natural to add \(T^* X \), and consider a holomorphic structure

\[\overline{D} = \overline{\partial} + F + R + h \]

on \(Q = T^* X \oplus \text{End}(TX) \oplus \text{End}(V) \oplus TX \). Here \(h \in \Omega^{(0,1)}(T^* X \otimes T^* X) \).

Note: \(\overline{D}^2 = 0 \iff F \wedge F + R \wedge R + \overline{\partial} h = 0 \). Rescaling \(F \) and \(R \) appropriately (previos deformation problems are invariant under such rescalings), and sett \(h = \overline{\partial}^\dagger \rho + \overline{\partial} \) — closed, as a three-form to get \((\star) \).
We now want to include the heterotic Bianchi Identity (from heterotic anomaly)

\[dH = 2 \partial \overline{\partial}^\dagger \rho = \frac{\alpha'}{4} \left(\text{tr}F^2 - \text{tr}R^2 \right) \quad (\ast), \]

where we have set \(\rho = \ast \omega \), and chosen a gauge where \(d\phi = 0 \).

Note that as connections, \(F \) and \(R \) also act naturally as

\[F, R : H^{(q,p)}(\text{End}(\ast)) \to H^{(q,p+1)}(T^*X). \]

Natural to add \(T^*X \), and consider a holomorphic structure

\[\overline{D} = \overline{\partial} + F + R + h \]

on \(Q = T^*X \oplus \text{End}(TX) \oplus \text{End}(V) \oplus TX \). Here \(h \in \Omega^{(0,1)}(T^*X \otimes T^*X) \).

Note: \(\overline{D}^2 = 0 \iff F \wedge F + R \wedge R + \overline{\partial}h = 0 \). Rescaling \(F \) and \(R \) appropriately (previous deformation problems are invariant under such rescalings), and set \(h = \overline{\partial}^\dagger \rho + \overline{\partial} - \) closed, as a three-form to get \((\ast) \).

Hence, heterotic supergravity corresponds to a holomorphic structure \(\overline{D} \) on \(Q \).
Conditions from Bianchi Identity

Introduction

Holomorphic Structures
 Holomorphic Bundle
 Holomorphic Tangent Bundle
 Conditions from Bianchi Identity

Conclusions
Next, we study deformations of \overline{D}, counted by $H^{(0,1)}_D(Q)$. Computed as before.
Next, we study deformations of \overline{D}, counted by $H^{(0,1)}_D(Q)$. Computed as before. Rewrite $\overline{D} = \overline{\partial}_2 + \mathcal{H}$, where we have defined

$$\mathcal{H} = h + \mathcal{F} + \mathcal{R},$$

where \mathcal{F} and \mathcal{R} now act on endomorphism valued forms.
Next, we study deformations of \overline{D}, counted by $H^{(0,1)}_{\overline{D}}(Q)$. Computed as before. Rewrite $\overline{D} = \overline{\partial} + \mathcal{H}$, where we have defined

$$\mathcal{H} = h + \mathcal{F} + \mathcal{R},$$

where \mathcal{F} and \mathcal{R} now act on endomorphism valued forms. Next, we define an extension sequence

$$0 \to T^*X \to Q \to Q_2 \to 0,$$

with extension class \mathcal{H}.

Next, we study deformations of \overline{D}, counted by $H^{(0,1)}_{\overline{D}}(Q)$. Computed as before.

Rewrite $\overline{D} = \overline{\partial}_2 + \mathcal{H}$, where we have defined

$$\mathcal{H} = h + \mathcal{F} + \mathcal{R},$$

where \mathcal{F} and \mathcal{R} now act on endomorphism valued forms.

Next, we define an extension sequence

$$0 \to T^*X \to Q \to Q_2 \to 0,$$

with extension class \mathcal{H}.

Note again that \mathcal{H} defines a map between cohomologies:

$$\mathcal{H} : H^{(p,q)}(Q_2) \to H^{(p,q+1)}(T^*X).$$
Next, we study deformations of \(\overline{D} \), counted by \(H^{(0,1)}_{\overline{D}}(Q) \). Computed as before.

Rewrite \(\overline{D} = \overline{\partial}_2 + \mathcal{H} \), where we have defined

\[
\mathcal{H} = h + \mathcal{F} + \mathcal{R},
\]

where \(\mathcal{F} \) and \(\mathcal{R} \) now act on endomorphism valued forms.

Next, we define an extension sequence

\[
0 \rightarrow T^*X \rightarrow Q \rightarrow Q_2 \rightarrow 0,
\]

with extension class \(\mathcal{H} \).

Note again that \(\mathcal{H} \) defines a map between cohomologies:

\[
\mathcal{H} : H^{(p,q)}(Q_2) \rightarrow H^{(p,q+1)}(T^*X).
\]

\(H^{(0,1)}_{\overline{D}}(Q) \) computes the first order heterotic moduli space \(TM \), at least when \(H^{(0,2)}(X) = 0 \). Technicality to ensure that deformations of \(\overline{D}, H^{(0,1)}_{\overline{D}}(Q) \), and deformations of anomaly cancellation agree [Anderson et al 2014, de la Ossa et al 2014].
Conditions from Bianchi Identity

Introduction

Holomorphic Structures

Holomorphic Bundle
Holomorphic Tangent Bundle

Conditions from Bianchi Identity

Conclusions
Long exact sequence in cohomology:

\[\cdots \rightarrow H^0(Q_2) \xrightarrow{\mathcal{H}} H^{(0,1)}(T^*X) \rightarrow H^{(0,1)}(Q) \rightarrow H^{(0,1)}(Q_2) \xrightarrow{\mathcal{H}} H^{(0,2)}(T^*X) \rightarrow \cdots, \]
Long exact sequence in cohomology:

\[\ldots \rightarrow H^0(Q_2) \xrightarrow{\mathcal{H}} H^{0,1}(T^*X) \rightarrow H^{0,1}(Q) \rightarrow H^{0,1}(Q_2) \xrightarrow{\mathcal{H}} H^{0,2}(T^*X) \rightarrow \ldots \]

\[T\mathcal{M} = H^{0,1}(Q) \cong \left(H^{0,1}(T^*X)/\text{Im}(\mathcal{H}) \right) \oplus \ker(\mathcal{H}) \]

\[\ker(\mathcal{H}) \subseteq H^{0,1}(Q_2) \]

\[= \left(\ker(\mathcal{F}) \cap \ker(\mathcal{R}) \right) \oplus H^{0,1}(\text{End}(V)) \oplus H^{0,1}(\text{End}(TX)) \]

\[\ker(\mathcal{F}) \cap \ker(\mathcal{R}) \subseteq H^{0,1}(TX) \]
Long exact sequence in cohomology:

\[\ldots \rightarrow H^0(Q_2) \xrightarrow{\mathcal{H}} H^{(0,1)}(T^*X) \rightarrow H^{(0,1)}(Q) \rightarrow H^{(0,1)}(Q_2) \xrightarrow{\mathcal{H}} H^{(0,2)}(T^*X) \rightarrow \ldots , \]

\[TM = H^{(0,1)}(Q) \cong \left(H^{(0,1)}(T^*X) / \text{Im}(\mathcal{H}) \right) \oplus \ker(\mathcal{H}) \]

\[\ker(\mathcal{H}) \subseteq H^{(0,1)}(Q_2) \]

\[= \left(\ker(\mathcal{F}) \cap \ker(\mathcal{R}) \right) \oplus H^{(0,1)}(\text{End}(V)) \oplus H^{(0,1)}(\text{End}(TX)) \]

\[\ker(\mathcal{F}) \cap \ker(\mathcal{R}) \subseteq H^{(0,1)}(TX) , \]

\[H^{(0,1)}(\text{End}(TX)) \] are unphysical, corresponding to field redefinitions, and

\[H^{(0,1)}(T^*X) \] are hermitian moduli.
Long exact sequence in cohomology:

\[
... \rightarrow H^0(Q_2) \xrightarrow{\mathcal{H}} H^{(0,1)}(T^*X) \rightarrow H^{(0,1)}(Q) \rightarrow H^{(0,1)}(Q_2) \xrightarrow{\mathcal{H}} H^{(0,2)}(T^*X) \rightarrow ... ,
\]

\[
TM = H^{(0,1)}(Q) \cong \left(\frac{H^{(0,1)}(T^*X)}{\text{Im}(\mathcal{H})} \right) \oplus \ker(\mathcal{H})
\]

\[
\ker(\mathcal{H}) \subseteq H^{(0,1)}(Q_2)
\]

\[
= \left(\ker(\mathcal{F}) \cap \ker(\mathcal{R}) \right) \oplus H^{(0,1)}(\text{End}(V)) \oplus H^{(0,1)}(\text{End}(TX))
\]

\[
\ker(\mathcal{F}) \cap \ker(\mathcal{R}) \subseteq H^{(0,1)}(TX)
\]

\[
H^{(0,1)}(\text{End}(TX))\] are unphysical, corresponding to field redefinitions, and \(H^{(0,1)}(T^*X) \) are hermitian moduli.

For the hermitian moduli, we also mod out by \(\text{Im}(\mathcal{H}) \cong \text{Im}(\mathcal{F}) = \{ \mathcal{F}(\alpha) \mid \alpha \in H^0(\text{End}(V)) \} \), which automatically incorporates the Yang-Mills condition. In the case polystable bundles, this set is non-trivial.
Long exact sequence in cohomology:

\[\cdots \to H^0(Q_2) \xrightarrow{\mathcal{H}} H^{(0,1)}(T^* X) \to H^{(0,1)}(Q) \to H^{(0,1)}(Q_2) \xrightarrow{\mathcal{H}} H^{(0,2)}(T^* X) \to \cdots, \]

\[T\mathcal{M} = H^{(0,1)}(Q) \cong \left(\frac{H^{(0,1)}(T^* X)}{\operatorname{Im}(\mathcal{H})} \right) \oplus \ker(\mathcal{H}) \]

\[\ker(\mathcal{H}) \subseteq H^{(0,1)}(Q_2) \]

\[= \left(\ker(\mathcal{F}) \cap \ker(\mathcal{R}) \right) \oplus H^{(0,1)}(\operatorname{End}(V)) \oplus H^{(0,1)}(\operatorname{End}(TX)) \]

\[\ker(\mathcal{F}) \cap \ker(\mathcal{R}) \subseteq H^{(0,1)}(TX), \]

\[H^{(0,1)}(\operatorname{End}(TX)) \] are unphysical, corresponding to field redefinitions, and

\[H^{(0,1)}(T^* X) \] are hermitian moduli.

For the hermitian moduli, we also mod out by \(\operatorname{Im}(\mathcal{H}) \cong \operatorname{Im}(\mathcal{F}) = \{ \mathcal{F}(\alpha) \mid \alpha \in H^0(\operatorname{End}(V)) \} \), which automatically incorporates the Yang-Mills condition. In the case polystable bundles, this set is non-trivial.

Note that the Bianchi Identity imposes the constraint that the moduli are in \(\ker(\mathcal{H}) \).
Conclusions
Conclusions:

[Page content is empty, no conclusions provided]
Conclusions:

- The Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle Q.
Conclusions:

- The Strominger System can be put in terms of a holomorphic structure D on a bundle Q.

- Easy to find Moduli, given in terms of deformations of D,

$$T\mathcal{M} = H^{(0,1)}_D(Q) = H^{(0,1)}(T^*X) \oplus \ker(\mathcal{H}).$$
Conclusions:

- The Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle Q.
- Easy to find Moduli, given in terms of deformations of \overline{D},

$$T\mathcal{M} = H^{(0,1)}_{\overline{D}}(\mathcal{Q}) = H^{(0,1)}(T^*X) \oplus \ker(\mathcal{H}).$$
- $H^{(0,1)}(T^*X)$ are hermitian moduli, while $\ker(\mathcal{H})$ are the allowed deformations of complex structure and bundle moduli.
Conclusions:

- The Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle Q.
- Easy to find Moduli, given in terms of deformations of \overline{D},

$$TM = H^{(0,1)}_D(Q) = H^{(0,1)}(T^*X) \oplus \ker(\mathcal{H}).$$

- $H^{(0,1)}(T^*X)$ are hermitian moduli, while $\ker(\mathcal{H})$ are the allowed deformations of complex structure and bundle moduli.

Outlook, and work in progress:
Conclusions and Outlook

Conclusions:

- The Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle Q.
- Easy to find Moduli, given in terms of deformations of \overline{D},

$$T\mathcal{M} = H^{(0,1)}_{\overline{D}}(Q) = H^{(0,1)}(T^*X) \oplus \ker(\mathcal{H}).$$

- $H^{(0,1)}(T^*X)$ are hermitian moduli, while $\ker(\mathcal{H})$ are the allowed deformations of complex structure and bundle moduli.

Outlook, and work in progress:

- \overline{D} gives a nice venue to study the moduli space \mathcal{M}. Obstructions live in $H^{(0,2)}(Q)$. Comes with a natural Kähler potential.
Conclusions:

- The Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle Q.
- Easy to find Moduli, given in terms of deformations of \overline{D},

$$TM = H^{(0,1)}_D(Q) = H^{(0,1)}(T^*X) \oplus \ker(H).$$

- $H^{(0,1)}(T^*X)$ are hermitian moduli, while $\ker(H)$ are the allowed deformations of complex structure and bundle moduli.

Outlook, and work in progress:

- \overline{D} gives a nice venue to study the moduli space \mathcal{M}. Obstructions live in $H^{(0,2)}(Q)$. Comes with a natural Kähler potential.
- 4d Theory: Holomorphic structures give natural candidates for Kähler metric in the 4d theory. Can the kernel structure derived from the Bianchi Identity be related to a 4d F-terms a la [Anderson et al 2010]. Similarly, the obstructions should give rise to a superpotential.
Conclusions:

- The Strominger System can be put in terms of a holomorphic structure \overline{D} on a bundle Q.
- Easy to find Moduli, given in terms of deformations of \overline{D},
 \[TM = H^{(0,1)}_{\overline{D}}(Q) = H^{(0,1)}(T^*X) \oplus \ker(\mathcal{H}). \]
- $H^{(0,1)}(T^*X)$ are hermitian moduli, while $\ker(\mathcal{H})$ are the allowed deformations of complex structure and bundle moduli.

Outlook, and work in progress:

- \overline{D} gives a nice venue to study the moduli space \mathcal{M}. Obstructions live in $H^{(0,2)}(Q)$. Comes with a natural Kähler potential.
- 4d Theory: Holomorphic structures give natural candidates for Kähler metric in the 4d theory. Can the kernel structure derived from the Bianchi Identity be related to a 4d F-terms a la [Anderson et al 2010]. Similarly, the obstructions should give rise to a superpotential.
- Higher orders in α'? Does this structure survive? Work in progress with Xenia de la Ossa.
Thank you for your attention!