Cosmological Inflation
and Gauge/Gravity Duality

Lilia Anguelova
(INRNE, Bulgarian Academy of Sciences)
Inflation: Traces of Quantum Gravity?

(Shortly after) Big Bang: Origin of all structure we see today!

NASA/WMAP Science Team
Cosmological Inflation:

Needed to solve several problems, chief among them being **homogeneity** and **isotropy** of the Universe on large scales.

Inflationary expansion: driven by the potential energy of a scalar field (**inflaton**).

Standard description:

A weakly coupled Lagrangian for the inflaton within QFT framework.
BUT: (after Planck satellite data, March, 2013)

There are important conceptual problems with that picture:

– initial conditions problem \[\frac{1}{2} (\nabla \varphi)^2 \sim V(\varphi) \]
– “unlikeness” problem

More recently:

BICEP2 data may indicate “large” gravitational waves (i.e. \(r \approx 0.2 \))

\[\Rightarrow \text{inflaton excursion} \sim \mathcal{O}(M_P) \text{ in field space} \]

\[\rightarrow \text{beyond Effective Field Theory?} \]
Gauge/Gravity Duality

Nonperturbative method for studying strongly coupled gauge theories

Can build Inflationary models within the gravity duals of a class of strongly coupled gauged theories

Is it possible to find in this class:

– models with large inflaton excursion \([\sim O(M_P)]\) ?

– solution to unlikeliness (etc.) problem(s) ?
Gauge/Gravity Duality

(AdS/CFT correspondence)

Two different perspectives on D-branes in string theory:

- gravity background [SUGRA solution]
- open strings BCs [gauge theory]

A stack of large number of D-branes:

Two sides of duality encode same degrees of freedom

[The two sides have equal partition functions!]
Walking background:

Coupling of dual gauge theory:

Inflationary model:

probe D3 brane moving in walking region of gravity background

→ has two dynamical scales

⇒ could allow overcoming the Lyth bound constraint
Lyth bound: (for FT description of inflation)

\[\sqrt{r} < \mathcal{O}(10^{-1}) \Delta \varphi, \text{ where } \Delta \varphi - \text{ inflaton excursion} \]

\[\Rightarrow \text{ If } \Delta \varphi < \mathcal{O}(M_P), \text{ then tensor to scalar ratio } r < 0.1 \]

(Recall: BICEP2 gives \(r > 0.1 \), although ?)

Lyth bound for D-brane inflation:
[Baumann, McAllister, hep-th/0610285]

Inflation: probe D3-brane moving in a nontrivial background sourced by \(N \) D\(_p\)-branes, where \(N \gg 1 \)

\[\Rightarrow \Delta \varphi < \left(\frac{4}{N} \right)^{1/2} M_P \Rightarrow r \ll 0.1 \]
Walking Inflationary model:

Two dynamical scales \rightarrow two parameters c, α

Bound: $\Delta \varphi < f(c, \alpha) M_P$

\rightarrow In principle: Possible to find region(s) of parameter space, where $\Delta \varphi$ is large enough to have $r > 0.1$

• In practice: Work in progress...

[Difficulty: Walking solution only known in certain limit, which is not suitable. Need to explore other regions of parameter space.]
Unlikeliness problem: (Steinhardt et al.)

Can build inflationary models ("slow-walking" inflation) with \(r \ll 1 \):

D3 probe in walking region of known limit solution

In this class of models:

- Form of inflaton potential \(\Rightarrow \) no "unlikeliness problem"
- Initial conditions problem also automatically solved

[walking region \(\rightarrow \) very slow roll due to a very flat potential

\[\Rightarrow \frac{1}{2}(\nabla \phi)^2 \ll V(\phi) \]]
Summary

New observational data:

• Restrict set of viable inflationary models
• Lead to a variety of problems
 [unlikeness, initial conditions, too small r]

New class of models from walking backgrounds:

• Could avoid unlikeness, initial conditions problems
• Could provide $\Delta \varphi \gtrsim M_P$ and thus $r > 0.1$

But still work to do...
Thank you!