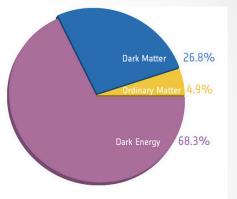
Experimental Opportunities LHC Challenges for String Theory

Piyush Kumar

String Pheno' 14 July 10, 2014

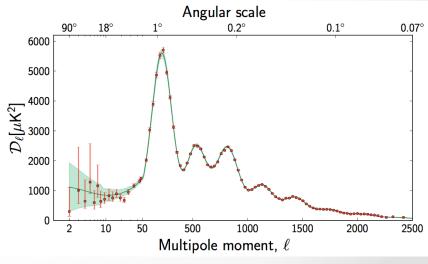
String Phenomenology :

Study of aspects of potential solutions of String Theory with

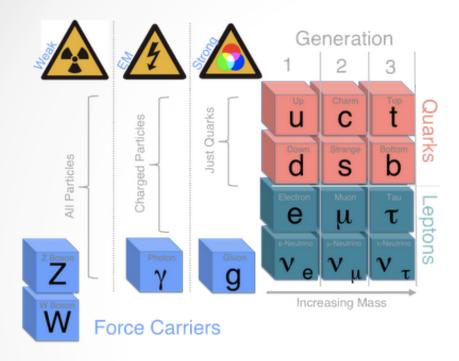

features "similar" to those observed in our Universe

What are the "Broad Features" of Our Universe?

- 3 + 1 "Large" dimensions (R_{extra} <~ 10⁻¹⁶ cm)
- Flat Universe with Dark Energy, Dark Matter


& Ordinary * Matter

-- ACDM cosmology



PLANCK

- Nearly scale invariant & adiabatic cosmological fluctuations
 - -- CMB & Large-scale structure

Ordinary* Matter – Standard Model

- * Elementary Matter (point-like)
- * Force Carriers (gauge bosons)
- * Scalar particle called the Higgs Boson

Broad Features

- Non-abelian gauge theory.
- Chiral fermions
 - -- charged : hierarchical masses & small mixing.
 - -- neutral (neutrinos) : tiny, hierarchical masses & large mixing.
- Spontaneous symmetry breaking by the Higgs mechanism.

Recent Experimental Results

Energy Frontier

- -- Positive: Discovery of Higgs @ 125 GeV.
- -- Null : Lack of Beyond SM physics so far
- Intensity/Precision Frontier
 - -- Positive : measured PMNS angle -- $\sin^2 \theta_{13}$
 - -- Null : No deviations from SM, more stringent constraints on new physics

Dark Frontier

- -- Null : LUX (direct detection), FERMI (indirect detection),...
- -- Hints (?) : X-ray line, Diffuse photons from GC, ...
- Cosmic Frontier

→ D. Marsh, M. Rummel

- -- Null : No sign of non-gaussianity so far
- -- Hint (?): Primordial Gravitational Waves (BICEP2)

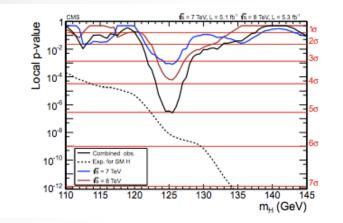
Westphal, Burgess, Hebecker, Maharana, Takahashi, Sagnotti, Nilles, Grimm, Shiu, Kaloper,
 Uranga. Also many parallel talks ...

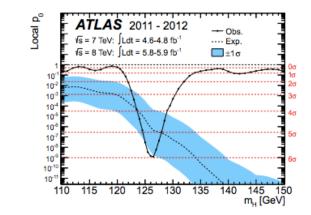
Plan of Talk

- I) Higgs Discovery
 - -- Summary of Results
 - -- What kinds of New Physics models favored/disfavored by data?
- II) String motivated SUSY Models Basic Features & Potential Signals

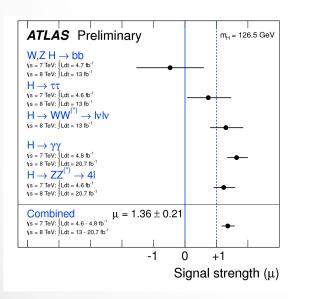
"Imperfectly" Natural

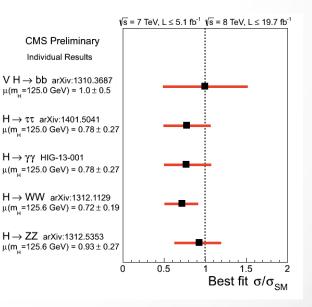
-- "Electroweak-Tuned"


"Mostly" Un-natural


- -- "Electroweak-Natural" briefly discuss one possibility
- -- R-parity or Not ?
- III) Dark Matter motivated from String Theory
 - -- Status of LSP WIMP DM.
 - -- Dark sectors.
- IV) Summary & concluding remarks • Piyush Kumar

I) Higgs Discovery


-- Summary of Results


-- Effect on BSM Models

• Signal consistent with that of a SM-like Higgs

• Discovery of a Higgs Particle @ 125 GeV

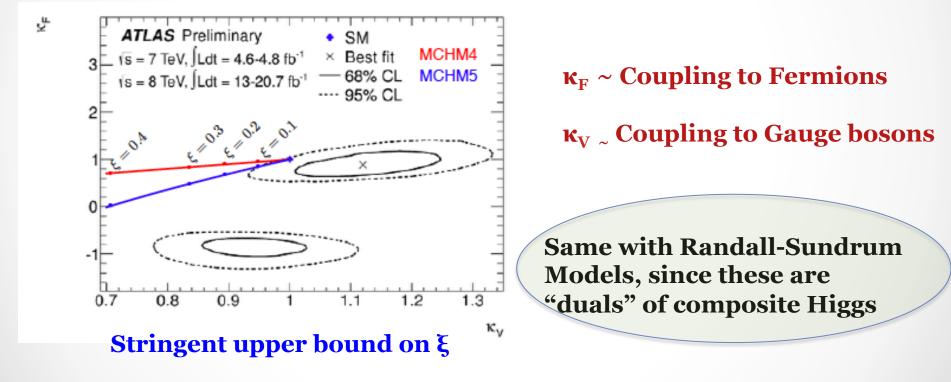
Effect on BSM Physics

- i) Technicolor Models
 - v_{EW} = f (scale of New Strong Dynamics)
 - -- All new resonances at M ~ 4 π f = 4 π v_{EW}

SM-like "Higgs" resonance at M <~ v_{EW}

- ii) Composite Higgs Models
 - -- Higgs pseudo-NGB of global symmetry (E.g. SO(5)/SO(4))
 - -- Could be light compared to $4 \pi f$
 - -- EW Precision observables under control, if $\xi = v_{EW}/f < 1$.

However, composite Higgs models in tension with data


• Piyush Kumar

•

Strongly Disfavored

Composite Higgs Models (contd.)

- **Higgs couplings different from that in SM at tree-level** -- The parameter $\xi = v_{EW}/f$ controls the deviation.
 - Also expect "Top-partners" below ~ 1 TeV (None observed)

Still possible, but increasingly disfavored

iii) TeV-scale Strings

Antoniadis; Hashi, Wan-Zhe

 Well-known that String scale can be made very small (>~ TeV) at the expense of making extra dimensions very large (relative to M_s)

$$M_P^2 = \frac{1}{g_s^2} M_s^{2+n} R_{\perp}^n \,,$$

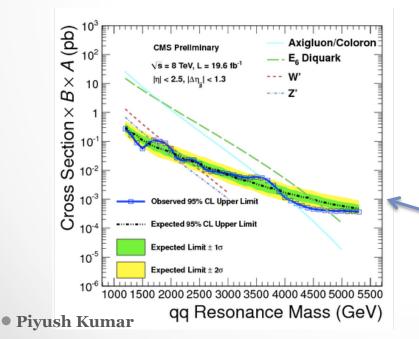
Arkani-Hamed, Dvali, Dimopoulos hep-ph/9803315 Antoniadis et al hep-ph/9804398

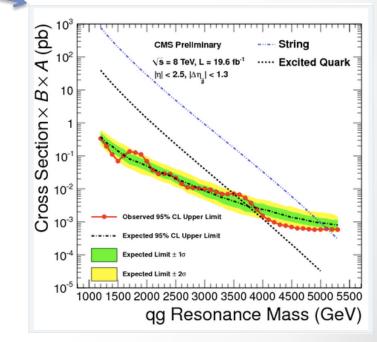
- **Experimental Signals**
 - -- Kaluza-Klein Excitations
 - -- String Resonances with Regge behavior : $M_n^2 = nM^2$, $j = j_0 + lpha' M_n^2$
 - -- Production of Black-Holes

 $M_{BH} \sim M_s/g_s^2$, so threshold higher than that for string resonances.

-- Z' bosons with mass M_{Z'} ~ g M_s generic in isotropic compactifications.
 receive mass by Green-Schwarz mechanism : Stuckelberg U(1)

Constraints & Interpretation


String resonances produced in qg → qg ,gg → gg scattering
 -- universal amplitude:


Anchordoqui, Goldberg, Lüst, Nawata, Steiberger, Taylor 0808.0497

-- current bound M_s >~ 5 TeV

Also see Lüst, Taylor 1308.1619

- FCNCs impose stronger bounds generically
- Also, bounds on Z' (for isotropic)

 $M_{Z'} > \sim 2$ TeV if Z' couples the same as Z

- Effect of Higgs Discovery @ M_H near 125 GeV
 - EWSB can occur with M_H suppressed relative to M_s by loop factor Antoniadis, Benakli, Quiros NPB 583 (2000) 35 Antoniadis, Dimopoulos, Pomarol, Quiros NPB 544 (1999)503 >~ 5 TeV
 - * So, M_H in the correct range, however at tree-level : $M_H = M_Z$
 - * Need large corrections to Higgs Quartic λ to raise M_H to 125
 - GeV, from KK and string modes (not clear if fully computable)

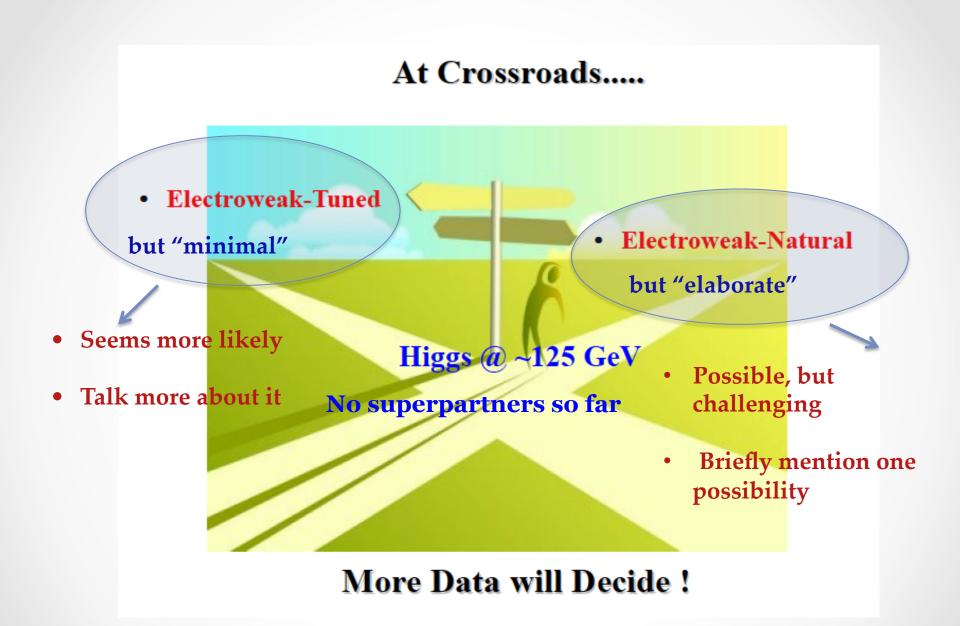
Prospect : Does not seem likely, but may still be a possibility

II) (String-motivated) SUSY Models

(with a high M_s)

SUSY Models

Favored by current Experimental Data over other approaches.


Reasons:

a) contain a Higgs-like boson with mass $M_h < \sim v_{EW}$

b) possess a "decoupling limit" :

when M_{soft} >> v_{EW}, Higgs SM-like & superpartners heavy

- Of course, string theory _____ SUSY at microscopic level
- However, nature of favored SUSY models different from naïve expectations

Electroweak-Tuned

Higgs Mass @ 125 GeV points roughly to two sub-classes

A) "Imperfectly" Natural

- * Scalar superpartners M_{soft} O(10-100) TeV
- * Gauginos may be naturally suppressed by (moduli) dynamics
- * Can explain **most** of the Hierarchy
- * An unexplained Little Hierarchy remains

B) "Mostly" Un-natural

- * $\lambda_{\rm H}\text{=}$ 0 at $M_{\rm soft}$ ~ O(10^{10}) GeV
- * Gauginos may or may not be suppressed relative to M_{soft}
- * Most of the Hierarchy is **NOT** explained – invoke fine-tuning

Talk about both :

a) Basic characteristics b) Potential Experimental Signals • Piyush Kumar

A) "Imperfectly" Natural

• Question : What sets the mass-scale of the scalar superpartners?

Elegant Solution : Moduli Dynamics

For "Generic" Kahler potential for Moduli & Matter Fields,

$$M_{modulus} \sim M_{soft} \sim M_{3/2}$$

Denef, Douglas hep-th/0411183 ; Gomez-Reino, Scrucca hep-th/0602246 ; Acharya, Kane, Kuflik 1006.3272

* Can be obtained from Theory for O(1) choices of microscopic constants Acharya, Bobkov, Kane, **PK**, Shao PRD 76 2007, 126010

* Moduli heavy enough to decay before BBN.

* Higgs mass can be successfully computed Kane, **PK**, Lu, Zheng PRD 85 2012, 075026

M_{3/2} = O(10-100) TeV

• If $H_{inf} > M_{3/2}$, then Moduli dominated Universe before BBN.

- Potentially important implications for Cosmology/Astrophysics,
 E.g. growth of substructure at small scales *Erickcek*, *Sigurdson 1106.0536*
- Crucial implications for Dark Matter in terms of candidates, abundance, interactions
 - **One example : "Non-thermal WIMP Miracle"**

Talk about DM later

Fan, Ozsoy, Watson 1405.7373

Moroi, Randall hep-ph/9906527; Acharya, Kane, <mark>PK</mark>, Watson 0908.2430, Many follow-up works in the literature

• What about gaugino masses?

Gaugino masses naturally suppressed relative to scalars in many string frameworks:

Choi, Falkowski, Nilles, Olechowski, Pokorski hep-th/0411066; hep-th/0503216 Conlon, Quevedo hep-th/0605141; Acharya, Bobkov, Kane, PK, Shao hep-th/0701034

A i) Collider Phenomenology of Framework with

"Heavy" scalars & "Light" Gauginos

- Broad features applicable to all models in this framework.
- Precise constraints & signals depend on particular models.

Constraints & Prospects @ LHC

- Since light(er) particles chargino, neutralino, gluino
 - -- Main Production Processes at the LHC:

$$pp \rightarrow \tilde{g}\tilde{g} \ \chi_2^0 \chi_1^\pm \ \chi_1^\pm \chi_1^\pm$$

Strong Electroweak Other channels, such as $X_1^{o}X_2^{o}$, $X_1^{o}X_1^{o}$, $X_2^{o}X_2^{o}$ more model dependent

-- Decays at the LHC:

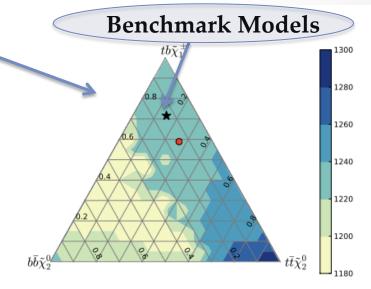
gluino
$$\longrightarrow \chi_1^0 t\bar{t}$$
, $\chi_2^0 t\bar{t}$, $\chi_1^0 b\bar{t}$, $\chi_1^\pm b\bar{t}$, $t\bar{b}$, $\chi_2^0 b\bar{b}$, $\chi_1^0 b\bar{b}$,
 $X_2^0 \longrightarrow X_1^0 Z; X_1^0 h, ...$
Again, precise BR's model-dependent
 $X_1^+ \longrightarrow X_1^0 W^+; ...$

Typical Final State: High p_T multi-jets, >= 3 b jets + 0 or 1 lepton + E_T Piyush Kumar

Constraints and Future Prospects

Analysis of LHC data presented in terms of "simplified models"

- -- assume 100% BR of \tilde{g} to one channel, for e.g. $\tilde{g} \to \chi_1^0 t \bar{t}$

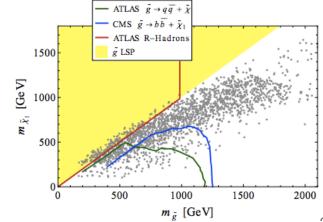

-- Should compute bound on masses for each model.

E.g. 1: String-Motivated SO(10) Yukawa Unification Models

Bounds on Gluino Masses : Raby 1309.3247 Anandakrishnan, Bryant, Raby 1404.5628, 1303.5125

E.g. 2 : M-theory motivated G₂-MSSM S. Ellis, Kane : To be published

Similar technique : M_{gluino} > 0.9-1 TeV



Implicit Assumption: Gluino reasonably heavier than the LSP jets, leptons "hard", i.e. have large p_T .

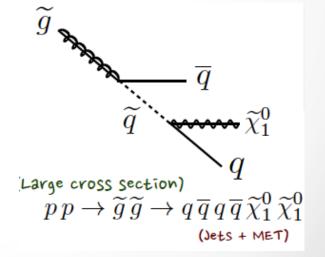
- However, if Gluino and LSP close in mass, then
 -- spectra "compressed"
 - -- jets & leptons "soft", many do not pass cuts.

Eg: "Mirage Mediation Models" with Precision Gauge Unification Choi, Jeong, Kobayashi, Okumura hep-ph/0508029 Krippendorf, Nilles, Ratz, Winkler 1306.0574 Also see Pheno. Papers on 'compressed SUSY'

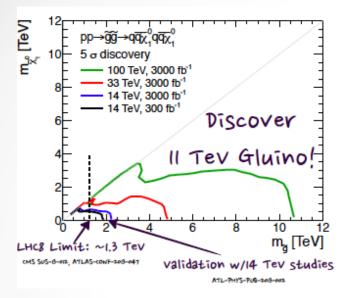
- Gluino bounds considerably relaxed.
- Gluino may be long-lived $(10\mu m 1 mm)$
- Co-annihilation effects important for LSP annihilation in early Universe.

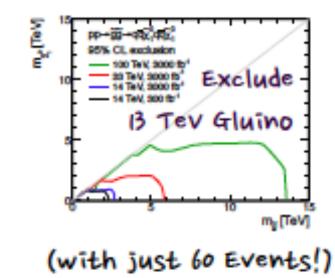
Prospects @ ~100 TeV Collider

- LHC sensitive to gluino masses <~ 2-2.5 TeV.
- A larger CM-Energy Collider will increase the reach.
- Studies quite preliminary. Lot to do .


Cohen et al 1311.6480

• Some work done for "simplified models"


E.g. Gluino-Neutralino Simplified Model


Final State : Multi-jets + No Leptons + **E**_T

Dominant Background : t tbar + jets (in contrast to W/Z+jets @ LHC)

• Significant improvement compared to the LHC Cohen et al 1311.6480

- What about stops & heavier electroweak-inos?
 - -- No detailed studies yet. Acharya, Bozek, Pongkitivanichkul,Sakurai: To appear
 -- May be possible to detect these for M_{3/2} <~ 30 TeV
 - * LHC has a good chance of discovering "Imperfect-Naturalness"
 - * 100 TeV collider would be a wonderful development

- would greatly help in confirming/ruling out the above and also other ideas

B) "Mostly" Un-natural

L. Ibanez's Talk

* **Basic Motivation:**

SM -- well-known that certain values of Higgs Mass can be tied to vanishing of Higgs quartic λ at some High scale.

Higgs near 125 GeV – λ vanishes at M \sim 10 10 GeV

(uncertain due to M_{top} uncertainty)

Elias-Miro et al 1112.3022 ; Holthausen et al 1112.2415; Wetterich 1112.2910,...

Most of the Hierarchy NOT explained, just fine-tuned

• Proposal:

SUSY @ High scale M_{soft} such that $\lambda(M_{soft}) \implies 0$ at M_{soft}

But
$$\lambda(m_S) = \frac{g^2(m_S) + g'^2(m_S)}{8} \cos^2 2\beta \longrightarrow \tan \beta = 1 @ M_{soft}$$

Can be motivated from theoretical approaches:

Hebecker, Knochel, Weigand 1204.2551; 1304.2567 Ibanez, Marchesano, Regalado, Valenzuela 1206.2655; Ibanez, Valenzuela 1301.5167

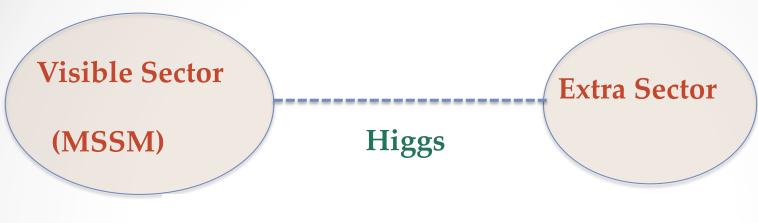
SUSY at M ~ 10¹⁰ GeV can be combined with Gauge Unification in F-Theory : Both scales can be related

$$M_{SS} = ((2g_s)^{1/2} / \alpha_G^{1/2}) \frac{M_c^2}{M_p}$$

Unification @ $M_c \sim 10^{14}$ GeV with threshold corrections.

Ibanez, Marchesano, Regalado, Valenzuela 1206.2655 Camara, Ibanez, Valenzuela 1404.0817

- Can give rise to QCD Axion with decay constant $F_a \sim 10^{12}$ GeV
- However, proton decay with a low Unification scale a challenge *Hebecker, Unwin 1405.2930*

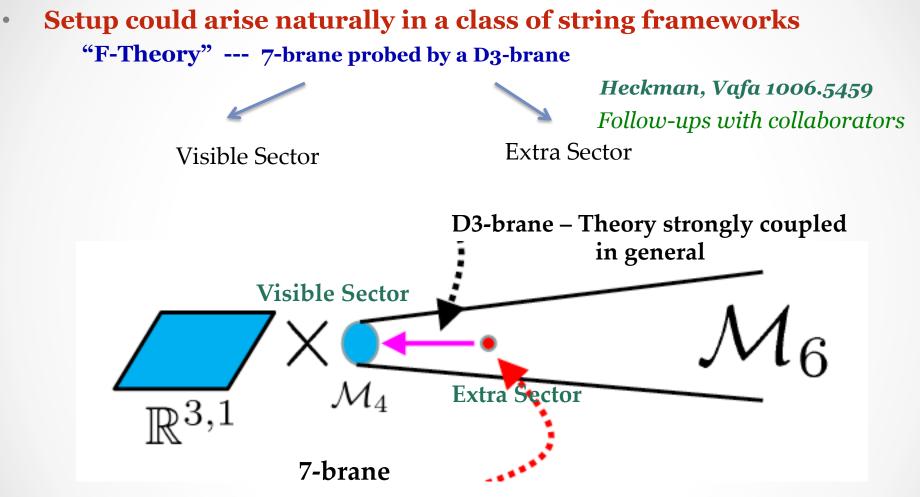


- Precise Measurements of Higgs & Top Mass & couplings.
- Possible discovery of QCD Axion DM in ADMX with $F_a \sim 10^{12}$ GeV.
- Observation of Proton Decay.

"Electroweak-Natural"

- As mentioned earlier, current data makes it challenging to realize this possibility.
- However, Nature may still work this way. Within SUSY, have to go beyond the MSSM :
 - -- Additional contributions to Physical Higgs Mass
 - -- New contributions to the Higgs potential
 - * may improve naturalness of EWSB
 - -- No Beyond-the-SM physics so far _____ models more "elaborate"
 - Fully explicit and viable models hard to construct. Nevertheless many attempts in literature.
- Talk about one possibility.

"Holomorphic" Higgs Portal


 $W = \lambda_u \mathcal{H}_u \mathcal{O}_u + \lambda_d \mathcal{H}_d \mathcal{O}_d.$

Higgs couples to operators in the Extra sector (in the superpotential).

 O_w, O_d -- part of SUSY breaking sector or part of messenger sector which couples to another SUSY sector -- extension of Gauge Mediation to Higgs sector.

Such terms considered in various field-theoretic contexts ...

Azatov et al 1106.3646,1106.4815; Kitano et al 1206.4053; Stancato et al 0807.3961 Gherghetta, Pomarol 1107.4697; Komargodski, Seiberg 0812.3900; Craig et al 1302.2642, Knaperi et al 1302.2642,

Local Model -- study region in which D3-brane is close to the 7-brane

Phenomenologically interesting Features

- -- Higgs Potential could change relative to the MSSM
- Heckman, PK, Vafa, Wecht JHEP 1201 (2012) -- Consistent with gauge coupling unification in the MSSM.
- Heckman, Vafa, Wecht 1103.3287 -- Possible to compute Higgs couplings : (Using SUSY, Holomorphy & Gauge invariance) Heckman, PK, Wecht 1204.3640; Heckman, PK, Wecht 1212.2979

MSSM coupled to sector which is superconformal in the UV :

- -- Imagine conformal symmetry broken with a "mass-gap" M and SUSY at scale $(F)^{1/2}$.
- -- very interesting to understand this dynamically.

Possible Collider interesting Soft jets to explore ... many soft \mathcal{O}_{neut}

Piyush Kumar

Signal :

RPV RPV III) To be, or not to be, that is the question...

- Until now, implicitly assumed R-parity conservation.
- However, possibility of R-parity violation quite interesting:
 -- LSP no-longer stable.
 - -- Significant reduction in missing E_T @ LHC

constraints on superpartners weakened.

- -- Viable RPV models can be constructed phenomenologically
- What about R-parity violation from top-down point of view?

Talk about : i) SU(5) GUT models, ii) SO(10) GUT models.

Any RPV disfavored

Spontaneous RPV a possibility

B. Ovrut's Talk

SU(5) GUTs: appealing due to simplicity

-- GUT breaking to G_{SM} and doublet-triplet splitting.
 employ some global symmetry H' arising in string theory
 -- To solve μ/Bμ problem, either by KN/CM or GM mechanism.

Kim, Nilles PLB138 (1984) 158; Casas, Munoz hep-ph/9302227; Giudice, Masiero PLB206 (1988) 480

H' forbids μ parameter at High scale, but H' must be broken to H \square H'

True in both Heterotic orbifolds & M-theory constructions *Kappl, Nilles, Ramos-Sanchez, Ratz, Schmidt-Hoberg 0812.2120; Lee, Raby, Ratz, Ross, Schieren 1009.0905; 1102.3595; Chen, Ratz, Staudt, Vaudrevange 1206.5375; Witten hep-ph/0201018; Acharya, Kane, Kuflik, Lu 1102.0556*

Then, can show that bilinear RPV coefficient κ in $\int d^2 \theta \kappa L H_u$ is such that

M. Ratz's Talk

either a) $\kappa/\mu = O(1)$ (H is trivial), or b) $\kappa/\mu = o$ (H equivalent to R-parity) *Acharya, Kane, PK, Lu, Zheng* 1403.4948

But stringent constraints on bilinear RPV from neutrino masses : $\kappa/\mu < \sim 10^{-3}$

R-parity violation disfavored Any observation of R-parity violation and disfavor above class of Models • Piyush Kumar
• 35 • SO(10) GUTs :

-- appealing, since <u>16</u> of SO(10) contains all SM particles + RH neutrino. Eg : E₈ \rightarrow SO(10) \rightarrow G_{SM} * U(1)_{B-L}

Heterotic M-theory : "Exact" MSSM spectrum -- Minimal Braun, He, Ovrut, Pantev hep-th/0501070; hep-th/0512177;hep-th/0602173

- $U(1)_{B-L}$ must be broken to make Z_{B-L} sufficiently massive.
- Since only candidate $\langle \tilde{\nu}^c \rangle$ has odd B-L,

R-parity, a Z₂- even subgroup of B-L, is spontaneously broken

For $\langle \tilde{\nu}^c \rangle$ to obtain a pheno. viable vev, need :

-- large flavor-dependent non-universality in the sneutrino soft masses relative to that for sleptons & selectrons

Amboroso, Ovrut, 0910.1129; Acharya, Kane, PK, Lu, Zheng 1403.4948

Option: Have extra 10's, 16's of SO(10)

• Piyush Kumar

Acharya et al : To appear •36

Broad Experimental Signals

B. Ovrut's talk

- Z_{B-L} gauge boson with mass >~ few TeV
- Existence of two light RH neutrinos.
- Leptonic RPV through the L H_u operator

"LSP" can decay. Also, "LSP" can be charged or colored.

Neutrino-Neutralino Mixing

-- generate majorana neutrino masses at tree level.

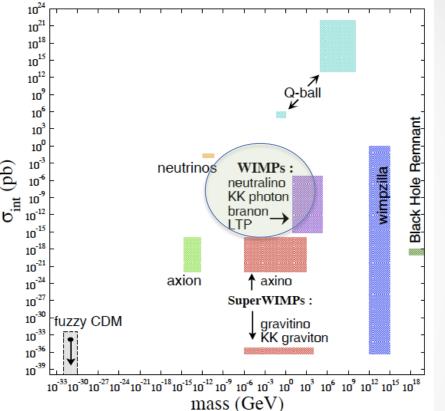
Can also have correlation between LSP decays & Neutrino Hierarchy !
 Marshall, Ovrut, Purves, Spinner 1401.7989, 1402.5434

More details/signals should be explored....

III) Dark Matter

(motivated from String Theory)

* B. Dutta's Talk

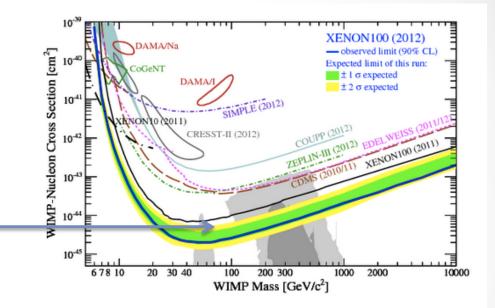

• Piyush Kumar

The Dark Matter Zoo

10²¹ Just an illustration – many more 10¹⁸ candidates possible ... 10¹⁵ 10¹² 10 Most popular candidates – 10⁶ 103 100 10⁻³ (qd) **WIMPs** & Axions 10-6 d. int 10 10⁻¹² 10⁻¹⁵ **String Axions – many talks** 10⁻¹⁸ 10⁻²¹ 10-24 10⁻²⁷ -- could be important during inflation.

-- could also naturally comprise Dark Matter.

Proposal to detect QCD axion with GUT scale F_a Graham, Rajendran 1306.6088


Finally, Axions can be Dark Radiation *Talks by D. Marsh, Angus, Pongkitvanichkul*

Jardner et al 1303.4758

(SUSY) WIMPs – minimal, since part of BSM Model.

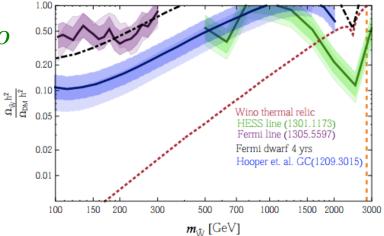
Direct Detection

- Many hints in the past few years
- All of them killed by LUX
- A large chunk of SUSY WIMP parameter space ruled out, and large chunks still left..

Example of SUSY WIMP not ruled out by direct detection - Wino LSP,

- -- Winos do not interact via Z-exchange or Higgs-exchange at tree level.
- -- Winos can also give rise to the correct abundance via the "non-thermal WIMP miracle"

However, ...

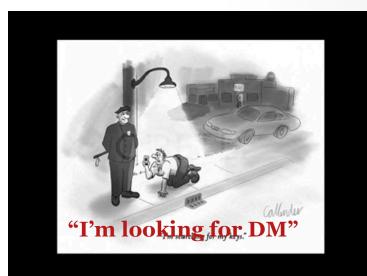

Piyush Kumar

Indirect detection

Fan et al 1307.4400

Latest bounds disfavor Wino DM. E.g. FERMI diffuse γ from Galactic Center

- Also, recent hints for WIMP indirect detection less convincing now
 - * 130 GeV "γ-line" from GC



* PAMELA Antipositron fraction from nearby region of Milky way.

Although LSP-WIMPs still viable,

- -- Constraints more & more stringent.
- -- In some sense, "Lamp-post" Physics.

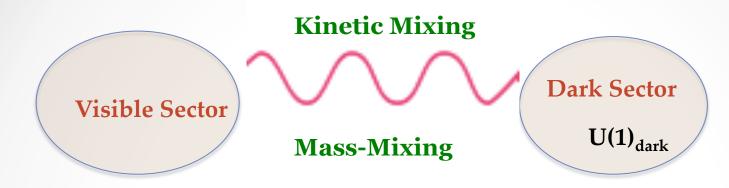
Worth considering other approaches

Dark Sectors

Motivation :

- Additional sectors in String Theory very common/natural.
 - -- UV completion of SM has additional gauge/matter spectra in most cases. -- String-consistency conditions "demand" it.
 - E.g. Hidden E₈ in Heterotic, RR-Tadpole cancellation in Type II.

Dark Matter could naturally be part of these additional sectors.

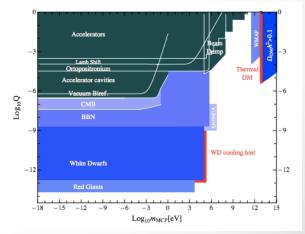

Some "common" observations :

Many talks on massive U(1)s in string theory

- -- Extra U(1) gauge bosons -- Z' (massive) , γ ' (massless)
 - a) Z' Stuckelberg; b) Z' –Higgs; c) γ' massless
- -- Hidden sector DM or "Light" Messenger DM Cvetic, Halverson, Piragua 1210.5245; Feng, Shiu, Soler, Ye 1401.5880, 1401.5890; Halverson, Orlofsky, Pierce 1403.1592; Many others....

• Piyush Kumar

Portals



Talks by Marchesano, Ramos-Sanchez, Mehta **Kinetic Mixing :** $L \supset \int d^2\theta \, \epsilon W_Y W_X + h.c.$

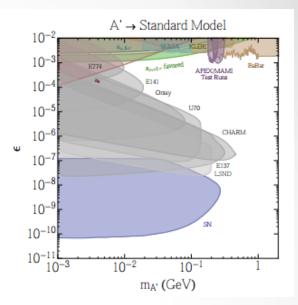
- Marginal coupling —> If generated, will persist to low energies
- Phenomenology depends on $\{M_{A'}, \varepsilon\} \& \{M_{X}\}$
 - a) $M_{A'} = 0$, Hidden sector fields acquire milli-charge ~ ϵ .

Holdom PLB 166 (1986); Banks, Seiberg 1011.5120; Abel, Schofeld hep-th/0311051, Marchesano et al 1406.27:

• Piyush Kumar

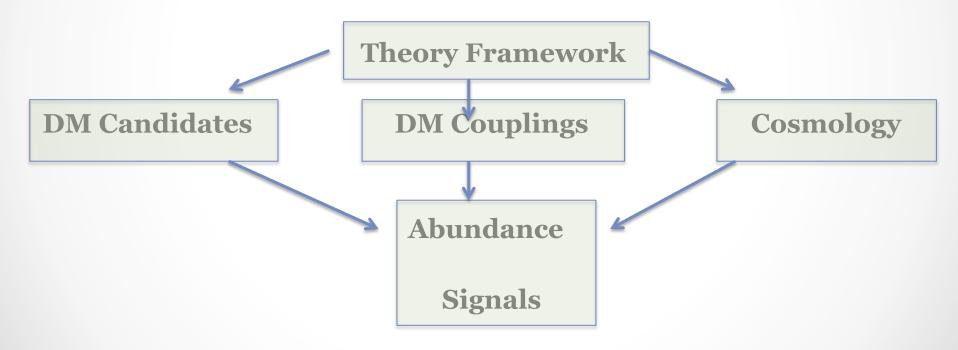
b) $M_{A'} \neq o$. Variety of $\{M_{A'}, \varepsilon\}$ can be generated.

Abel et al hep-ph/0608248, 0803.1449; Goodsell et al 0909.0515; 11110.6901; Cicoli et al 1103.370<u>{</u>


Dark Gauge boson will have small coupling ~ ε to visible sector & vice-versa

Interesting Consequence:

"LSP" will decay to Dark Sector before BBN even with R-parity conservation. E.g. Bounds on Winos can be evaded


Mass Mixing :

- -- Physical Z' eigenstates: generically couple with O(1) strength to SM fermions Feng, Shiu, Soler, Ye 1401.5880, 1401.5890
- -- $M_{Z'}$ can only be suppressed by a few orders of magnitude relative to M_{string} .
- -- Phenomenologically relevant only for low string scale.
- Bound on M_{Z'} >~ few TeV
 Piyush Kumar

Only the tip of the DM Iceberg...

- Until now, only talked about U(1)_{dark}
- Many other possibilities : G_{dark} ; G_{dark} * U(1)_{dark} ; G_{dark} * G_{flavor} ;
- Important and useful to have well-motivated theoretical guide

Tons to explore ...

Summary & Concluding Remarks

- We are living in a data-rich era.
 - -- Data, even if "Null", can provide important insights.
- Talked about some aspects of recent data in High-energy physics, and the insights it provides for string-motivated frameworks vis-à-vis :
 - -- Higgs and Beyond-SM physics.
 - -- Dark Matter Physics.
- SUSY still the most probable framework for Beyond-SM physics.
 - -- However, SUSY models different from what naively expected.
 - -- Most "simple" models appear to be "electroweak-tuned"

Imperfectly Natural

Mostly Un-natural

---Studied potential signals of each

- **R-parity violation** interesting implications for string-GUT models.
 - * Observation of RPV will disfavor SU(5) GUT models. (with mild assumptions)
 - * SO(10) models compatible with *spontaneous* RPV in principle -- can give rise to interesting signals.
- **Dark Matter** -- Variety of possibilities
 - * Status of LSP WIMP DM -- still viable but under increasing strain.
 - * Worth looking at other frameworks:
 - E.g. Dark Sectors very well motivated
 - -- incredible array of possibilities, just scratched the tip ...
 - -- very important to have an underlying theoretical framework for understanding different aspects in a coherent manner.

"Electroweak-Natural" Models seem rather challenging.

-- Should not give up hope, however. May still be possible...

Think outside the Box !

Hope that Nature is kind to us and provides us with

opportunities to make String Theory an experimental science.