Patrick K. S. Vaudrevange

Universe Cluster Munich

July 7th, 2014

String Pheno 2014, Trieste

Based on:
- H. P. Nilles and P. V.: 1403.1597
Motivation

- Connect string theory to particle physics
- Framework: $E_8 \times E_8$ heterotic string
- Compactify from 10d to 4d on orbifold

Questions in this talk:
- How many 6d orbifold geometries are there?
- What are their common properties for model-building?
Motivation

- Connect string theory to particle physics
- Framework: $E_8 \times E_8$ heterotic string
- Compactify from 10d to 4d on orbifold
- Questions in this talk:
 - How many 6d orbifold geometries are there?
 - What are their common properties for model-building?
Motivation

- Connect string theory to particle physics
- Framework: $E_8 \times E_8$ heterotic string
- Compactify from 10d to 4d on orbifold
- Questions in this talk:
 - How many 6d orbifold geometries are there?
 - What are their common properties for model-building?
Orbifolds

Lattice Λ
Orbifolds

Lattice Λ spanned by e_1 and e_2
Orbifolds

Lattice Λ spanned by e_1 and e_2
Orbifolds

Lattice Λ
Orbifolds

Lattice Λ
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

T^2 defined by $x \sim x + e_i$ for $x \in \mathbb{R}^2$
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

P rotational symmetry of Λ

$P = \{1, \theta, \theta^2\} = \mathbb{Z}_3$

$\theta \equiv 120^\circ$
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

P rotational symmetry of Λ
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

P rotational symmetry of Λ

Orbifold T^2/P

$x \sim \theta x$
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

P rotational symmetry of Λ

Orbifold T^2/P with 3 fixed points
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

P rotational symmetry of Λ

Orbifold T^2/P with 3 fixed points
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

P rotational symmetry of Λ

Orbifold T^2/P with 3 fixed points

Heterotic string on orbifolds

Patrick Vaudrevange
String Pheno in the Heterotic Orbifold Landscape
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

P rotational symmetry of Λ

Orbifold T^2/P with 3 fixed points

Heterotic string on orbifolds

untwisted string from $E_8 \times E_8$
Orbifolds

Lattice $\Lambda \Rightarrow$ torus T^2

P rotational symmetry of Λ

Orbifold T^2/P with 3 fixed points \bullet

Heterotic string on orbifolds

untwisted string \bigcirc from $E_8 \times E_8$

twisted string \bigcirc at fixed point
Classification of Orbifolds in 6D

1) Lattice Λ

2) P rotational symmetry of Λ

$$P \iff \mathcal{N} = 1 \text{ SUSY}$$

3) Include roto-translations $x \mapsto \theta x + t$

\Rightarrow Crystallography
Classification of Orbifolds

in 6D
1) Lattice Λ
2) P rotational symmetry of Λ
 \[P \iff N = 1 \text{ SUSY} \]
3) Include roto-translations $x \mapsto \theta x + t$
 \[\Rightarrow \text{Crystallography} \]

Example in 2d:
1) 17 different tilings
2) $P = \mathbb{Z}_N$ with $N = 2, 3, 4, 6$
 E.g. no \mathbb{Z}_5 in 2d:

e_1
Classification of Orbifolds
in 6D
1) Lattice Λ
2) P rotational symmetry of Λ
 \[P \iff \mathcal{N} = 1 \text{ SUSY} \]
3) inlcude roto-translations $x \mapsto \theta x + t$
 \Rightarrow Crystallography

Example in 2d:
1) 17 different tilings
2) $P = \mathbb{Z}_N$ with $N = 2, 3, 4, 6$
 E.g. no \mathbb{Z}_5 in 2d:
Classification of Orbifolds in 6D

1) Lattice Λ
2) \mathcal{P} rotational symmetry of Λ
 \[\mathcal{P} \iff \mathcal{N} = 1 \text{ SUSY} \]
3) Include roto-translations $x \mapsto \theta x + t$
 \[\Rightarrow \text{Crystallography} \]

Example in 2d:
1) 17 different tilings
2) $\mathcal{P} = \mathbb{Z}_N$ with $N = 2, 3, 4, 6$

 E.g. no \mathbb{Z}_5 in 2d:
Classification of Orbifolds

in 6D

1) Lattice Λ
2) P rotational symmetry of Λ
 \[P \iff \mathcal{N} = 1 \text{ SUSY} \]
3) include roto-translations $x \mapsto \theta x + t$
 \[\Rightarrow \text{Crystallography} \]

Example in 2d:

1) 17 different tilings
2) $P = \mathbb{Z}_N$ with $N = 2, 3, 4, 6$
 E.g. no \mathbb{Z}_5 in 2d:
Classification of Orbifolds

in 6D

1) Lattice Λ

2) P rotational symmetry of Λ

 $P \iff \mathcal{N} = 1$ SUSY

3) include roto-translations $x \mapsto \theta x + t$

\Rightarrow Crystallography

Example in 2d:

1) 17 different tilings

2) $P = \mathbb{Z}_N$ with $N = 2, 3, 4, 6$

 E.g. no \mathbb{Z}_5 in 2d:
Classification of Orbifolds

in 6D

1) Lattice Λ

2) P rotational symmetry of Λ

 \[P \iff \mathcal{N} = 1 \text{ SUSY} \]

3) Include roto-translations $x \mapsto \theta x + t$

 \Rightarrow Crystallography

Example in 2d:

1) 17 different tilings

2) $P = \mathbb{Z}_N$ with $N = 2, 3, 4, 6$

 E.g. no \mathbb{Z}_5 in 2d:
Classification of Orbifolds in 6D

1) Lattice \(\Lambda \)

2) \(P \) rotational symmetry of \(\Lambda \)
 \[P \iff \mathcal{N} = 1 \text{ SUSY} \]

3) Include roto-translations \(x \mapsto \theta x + t \)
 \[\Rightarrow \text{Crystallography} \]

Example in 2d:

1) 17 different tilings

2) \(P = \mathbb{Z}_N \) with \(N = 2, 3, 4, 6 \)
 E.g. no \(\mathbb{Z}_5 \) in 2d:
Classification of Orbifolds

Results in 6d:
1) 60 point groups P with $\mathcal{N} \geq 1$ SUSY
2) 186 lattices Λ
 include roto-translations:
3) 520 inequivalent orbifold geometries in 6d
 162 with P abelian
 358 with P non-abelian
Classification of Orbifolds

Results in 6d:
1) 60 point groups P with $\mathcal{N} \geq 1$ SUSY
2) 186 lattices Λ
include roto-translations:
3) 520 inequivalent orbifold geometries in 6d
 162 with P abelian
 358 with P non-abelian
$h^{2,1}$ vs. $h^{1,1}$ for abelian orbifold geometries
Number of generations for abelian orbifold geometries

M. Fischer, M. Ratz, J. Torrado and P. V. 2012

String Pheno in the Heterotic Orbifold Landscape
Number of generations for abelian orbifold geometries

- $h^{1,1} - h^{2,1}$ always divisible by six
- Only exception: $(h^{1,1}, h^{2,1}) = (20, 0)$
- No geometry with three generations
 \Rightarrow discrete Wilson lines needed for three generations
- computer program “orbifolder” to create and analyse orbifold models with abelian P

H.P. Nilles, S. Ramos-Sanchez, P. V. and A. Wingerter 2012
Non-abelian Orbifolds: untwisted Moduli \((h_{U}^{(1,1)}, h_{U}^{(2,1)})\)

<table>
<thead>
<tr>
<th>untwisted moduli ((h_{U}^{(1,1)}, h_{U}^{(2,1)}))</th>
<th>non-abelian point groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,2)</td>
<td>(S_3, D_4, D_6)</td>
</tr>
<tr>
<td>(2,1)</td>
<td>(QD_{16}, (\mathbb{Z}_4 \times \mathbb{Z}_2) \times \mathbb{Z}_2, \mathbb{Z}_4 \times S_3, (\mathbb{Z}_6 \times \mathbb{Z}_2) \times \mathbb{Z}_2, GL(2, 3), SL(2, 3) \times \mathbb{Z}_2)</td>
</tr>
<tr>
<td>(2,0)</td>
<td>(\mathbb{Z}_8 \times \mathbb{Z}_2, \mathbb{Z}_3 \times S_3, \mathbb{Z}_3 \times \mathbb{Z}_8, SL(2, 3) - I, \mathbb{Z}_3 \times D_4, \mathbb{Z}_3 \times Q_8, (\mathbb{Z}_4 \times \mathbb{Z}_4) \times \mathbb{Z}_2, \mathbb{Z}_3 \times (\mathbb{Z}_3 \times \mathbb{Z}_4), \mathbb{Z}_6 \times S_3, \mathbb{Z}_3 \times SL(2, 3), \mathbb{Z}_3 \times ((\mathbb{Z}_6 \times \mathbb{Z}_2) \times \mathbb{Z}_2), SL(2, 3) \times \mathbb{Z}_4)</td>
</tr>
<tr>
<td>(1,1)</td>
<td>(A_4, S_4)</td>
</tr>
<tr>
<td>(1,0)</td>
<td>(T_7, \Delta(27), \mathbb{Z}_3 \times A_4, \Delta(48), \Delta(54), \mathbb{Z}_3 \times S_4, \Delta(96), \Sigma(36\phi), \Delta(108), PSL(3, 2), \Sigma(72\phi), \Delta(216))</td>
</tr>
</tbody>
</table>
$h^{2,1}$ vs. $h^{1,1}$ for non-abelian orbifold geometries
Number of generations for all orbifold geometries

- 65 orbifold geometries with $h^{1,1} = h^{2,1}$
 \[\Rightarrow \text{always non–chiral using standard heterotic CFT} \]
- Magnetized orbifolds to create chirality in blow–up

S. GrootNibbelink and P. V. 2012
The Orbifold Landscape

1) all \mathbb{Z}_N and some $\mathbb{Z}_N \times \mathbb{Z}_M$ orbifolds
2) use “orbifolder” for MSSM models
 we find ≈ 12000 MSSM-like models
3) lessons from this Orbifold Landscape?
 - location of matter
 - location of Higgs
 - flavor symmetries
 - gaugino condensation and SUSY breaking
The Orbifold Landscape

1) all \mathbb{Z}_N and some $\mathbb{Z}_N \times \mathbb{Z}_M$ orbifolds
2) use “orbifolder” for MSSM models
 we find ≈ 12000 MSSM-like models
3) lessons from this Orbifold Landscape?
 - location of matter
 - location of Higgs
 - flavor symmetries
 - gaugino condensation and SUSY breaking
<table>
<thead>
<tr>
<th>orbifold</th>
<th># MSSM</th>
<th>max. # of indep. WLs</th>
<th># models with indep. vanishing WLs</th>
<th># MSSM without $U(1)_{\text{anom}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}_3 (1,1)</td>
<td>0</td>
<td>3</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_4 (1,1)</td>
<td>0</td>
<td>4</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>(2,1)</td>
<td>128</td>
<td>3</td>
<td>128 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>(3,1)</td>
<td>25</td>
<td>2</td>
<td>25 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_6-I (1,1)</td>
<td>31</td>
<td>1</td>
<td>31 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>(2,1)</td>
<td>31</td>
<td>1</td>
<td>31 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_6-II (1,1)</td>
<td>348</td>
<td>3</td>
<td>13 335 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>(2,1)</td>
<td>338</td>
<td>3</td>
<td>10 328 0 0 0</td>
<td>2</td>
</tr>
<tr>
<td>(3,1)</td>
<td>350</td>
<td>3</td>
<td>18 332 0 0 0</td>
<td>2</td>
</tr>
<tr>
<td>(4,1)</td>
<td>334</td>
<td>2</td>
<td>39 295 0 0 0</td>
<td>3</td>
</tr>
<tr>
<td>\mathbb{Z}_7 (1,1)</td>
<td>0</td>
<td>1</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_8-I (1,1)</td>
<td>263</td>
<td>2</td>
<td>221 42 0 0 0 0</td>
<td>7</td>
</tr>
<tr>
<td>(2,1)</td>
<td>164</td>
<td>2</td>
<td>123 41 0 0 0 0</td>
<td>5</td>
</tr>
<tr>
<td>(3,1)</td>
<td>387</td>
<td>1</td>
<td>387 0 0 0 0 0</td>
<td>27</td>
</tr>
<tr>
<td>\mathbb{Z}_8-II (1,1)</td>
<td>638</td>
<td>3</td>
<td>212 404 22 0 0 0</td>
<td>7</td>
</tr>
<tr>
<td>(2,1)</td>
<td>260</td>
<td>2</td>
<td>92 168 0 0 0 0</td>
<td>3</td>
</tr>
<tr>
<td>\mathbb{Z}_{12}-I (1,1)</td>
<td>365</td>
<td>1</td>
<td>365 0 0 0 0 0</td>
<td>8</td>
</tr>
<tr>
<td>(2,1)</td>
<td>385</td>
<td>1</td>
<td>385 0 0 0 0 0</td>
<td>9</td>
</tr>
</tbody>
</table>
The OrbifoldLandscape

<table>
<thead>
<tr>
<th>orbifold</th>
<th># MSSM</th>
<th>max. # of indep. WLs</th>
<th># models with 0 indep. vanishing WLs</th>
<th># models with 1 indep. vanishing WLs</th>
<th># models with 2 indep. vanishing WLs</th>
<th># models with 3 indep. vanishing WLs</th>
<th># models with ≥ 4 indep. vanishing WLs</th>
<th># MSSM without $U(1)_{\text{anom}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}_3</td>
<td>$(1,1)$</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_4</td>
<td>$(1,1)$</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2,1)</td>
<td>128</td>
<td>3</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(3,1)</td>
<td>25</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_6-I</td>
<td>$(1,1)$</td>
<td>31</td>
<td>1</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2,1)</td>
<td>31</td>
<td>1</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(3,1)</td>
<td>128</td>
<td>3</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(4,1)</td>
<td>25</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_6-II</td>
<td>$(1,1)$</td>
<td>348</td>
<td>3</td>
<td>13</td>
<td>335</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2,1)</td>
<td>338</td>
<td>3</td>
<td>10</td>
<td>328</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(3,1)</td>
<td>350</td>
<td>3</td>
<td>18</td>
<td>332</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(4,1)</td>
<td>334</td>
<td>2</td>
<td>39</td>
<td>295</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_7</td>
<td>$(1,1)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_8-I</td>
<td>$(1,1)$</td>
<td>263</td>
<td>2</td>
<td>221</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2,1)</td>
<td>164</td>
<td>2</td>
<td>123</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(3,1)</td>
<td>387</td>
<td>1</td>
<td>387</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_8-II</td>
<td>$(1,1)$</td>
<td>638</td>
<td>3</td>
<td>212</td>
<td>404</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2,1)</td>
<td>260</td>
<td>2</td>
<td>92</td>
<td>168</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}_{12}-I</td>
<td>$(1,1)$</td>
<td>365</td>
<td>1</td>
<td>365</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2,1)</td>
<td>385</td>
<td>1</td>
<td>385</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The Orbifold Landscape

<table>
<thead>
<tr>
<th>orbifold</th>
<th># MSSM</th>
<th>max. # of indep. WLs</th>
<th># models with indep. vanishing WLs</th>
<th># MSSM without (U(1)_{\text{anom}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z}{12} \times \mathbb{Z}{2}) (1,1)</td>
<td>211</td>
<td>2</td>
<td>135 76 0 0 0 0</td>
<td>3</td>
</tr>
<tr>
<td>(\mathbb{Z}_2 \times \mathbb{Z}_4) (1,1)</td>
<td>101</td>
<td>6</td>
<td>0 59 42 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Z}_2 \times \mathbb{Z}_6) (1,1)</td>
<td>3632</td>
<td>4</td>
<td>67 2336 1199 30 0</td>
<td>10</td>
</tr>
<tr>
<td>(\mathbb{Z}_2 \times \mathbb{Z}_6) (1,1)</td>
<td>445</td>
<td>2</td>
<td>332 113 0 0 0</td>
<td>5</td>
</tr>
<tr>
<td>(\mathbb{Z}_2 \times \mathbb{Z}_6) (1,1)</td>
<td>0</td>
<td>0</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Z}_3 \times \mathbb{Z}_3) (1,1)</td>
<td>445</td>
<td>3</td>
<td>1 369 75 0 0</td>
<td>9</td>
</tr>
<tr>
<td>(\mathbb{Z}_3 \times \mathbb{Z}_6) (1,1)</td>
<td>465</td>
<td>1</td>
<td>441 24 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Z}_4 \times \mathbb{Z}_4) (1,1)</td>
<td>1466</td>
<td>3</td>
<td>11 529 921 5 0</td>
<td>1</td>
</tr>
<tr>
<td>(\mathbb{Z}_6 \times \mathbb{Z}_6) (1,1)</td>
<td>1128</td>
<td>0</td>
<td>1128 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>11940</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td>102</td>
</tr>
</tbody>
</table>
Local $SO(10)$ GUTs

- Matter in complete GUT representation: 16 of $SO(10)$
- Origin? Twisted matter at fixed point with enhanced $SO(10)$ symmetry
Local $SU(5)$ GUTs

H.P. Nilles and P.V. 2014
Any local GUTs

H.P. Nilles and P. V. 2014

String Pheno in the Heterotic Orbifold Landscape
Locations with split multiplets for Higgs

- Higgs in split GUT representation
- Origin? Location in higher dim. where GUT group is broken, i.e. 10d bulk

H.P. Nilles and P. V. 2014

Patrick Vaudrevange String Pheno in the Heterotic Orbifold Landscape
Flavor symmetries

- (Discrete) flavor symmetry from symmetries of orbifold geometry
- Broken by Wilson lines
- If Wilson line vanishes \Rightarrow larger flavor symmetry

H.P. Nilles and P. V. 2014
Scale of Gaugino Condensation

- Hidden sector gauge group from hidden E_8
- "Intermediate" size due to modular invariance
- β-function \Rightarrow strong coupling at intermediate scale Λ
- SUSY breaking by dilaton F term
- Gravity mediation: $m_{3/2} \sim \frac{\Lambda^3}{M_{Pl}^2}$
Conclusion

- Complete classification of orbifold geometries with $N \geq 1$ SUSY (Abelian and non-Abelian)
 - $\Rightarrow 520$ orbifold geometries
- Useful tool for abelian P: “orbifolder”
- The OrbifoldLandscape: ≈ 12000 MSSM-like models
- Lessons:
 - Location of matter: local GUTs
 - Location of Higgs: 10d bulk
 - Discrete flavor symmetries
 - Low energy SUSY breaking from hidden sector
- Lessons valid outside heterotic context?
Conclusion

- Complete classification of orbifold geometries with $\mathcal{N} \geq 1$ SUSY (Abelian and non-Abelian)
- \Rightarrow 520 orbifold geometries
- Useful tool for abelian P: “orbifolder”
- The OrbifoldLandscape: ≈ 12000 MSSM-like models
- Lessons:
 - Location of matter: local GUTs
 - Location of Higgs: 10d bulk
 - Discrete flavor symmetries
 - Low energy SUSY breaking from hidden sector
- Lessons valid outside heterotic context?