DE SITTER VACUA FROM NON-PERTURBATIVE FLUX COMPACTIFICATIONS

> IVONNE ZAVALA CTN, GRONINGEN

STRING PHENOMENOLOGY 2014, ICTP

Based on 1312.5328 (PRD) w/ Johan Blåbäck & Diederik Roest

# OUTLINE

## Introductory words

Flux compactifications and de Sitter vacua: KKLT and beyond

A single step F-term dS stabilisation: the model, tools, solutions, constraints

Summary and outlook

# **INTRODUCTORY WORDS**

## Cosmic acceleration came to stay:

### Early Universe: Inflation



(~68% energy density content made of Dark Energy)





Cosmological Constant,  $\Lambda > 0$ , consistent with data

 Crucial to make further progress in understanding the origin of de Sitter (dS) vacua in string theory

• If amount of dS vacua is huge, string theory landscape may explain the tiny value of the CC today  $\Lambda \sim 10^{-120}$  (if responsible for present day acceleration!)

 In any case important to understand dS vacua in ST/SUGRA. Find systematic ways to generate stable dS vacua FLUX COMPACTIFICATIONS AND DE SITTER

Flux compactification in type IIB: N=1 sugra [Giddings-Kachru-Polchiski, '01]

1. Fluxes generate a potential for dilaton S and complex structure moduli, Ui. Kähler moduli T remain as flat direction

## FLUX COMPACTIFICATIONS AND DE SITTER

Flux compactification in type IIB: N=1 sugra

[Giddings-Kachru-Polchiski, '01]

1. Fluxes generate a potential for dilaton S and complex structure moduli, Ui. Kähler moduli T remain as flat direction [Kachru-Kallosh-Linde-Trivedi, '03]

2. Add (mod. independent) nonperturbative terms to stabilise Kähler moduli: only adS can be obtained



## FLUX COMPACTIFICATIONS AND DE SITTER

Flux compactification in type IIB: N=1 sugra

[Giddings-Kachru-Polchiski, '01]

1. Fluxes generate a potential for dilaton S and complex structure moduli, Ui. Kähler moduli T remain as flat direction [Kachru-Kallosh-Linde-Trivedi, '03]

2. Add (mod. independent) nonperturbative terms to stabilise Kähler moduli: only adS can be obtained

3. Uplift the minimum to a dS, positive vacuum energy by adding an anti-Dbrane  $V_{tot} = V_{AdS} + V_{uplift}$ 



dS vacua from flux compactifications triggered lot of work on moduli stabilisation and stable dS solutions in string theory/supergravity dS vacua from flux compactifications triggered lot of work on moduli stabilisation and stable dS solutions in string theory/supergravity

In type IIA, D-term uplift, F-term uplift, large volume scenario, heterotic (CY&orbifolds), M-theory . . .

dS vacua from flux compactifications triggered lot of work on moduli stabilisation and stable dS solutions in string theory/supergravity

In type IIA, D-term uplift, F-term uplift, large volume scenario, heterotic (CY&orbifolds), M-theory . . .

In 4D N=1, via duality, non-geometric fluxes were found and stable dS vacua have been found in STU models with isotropic and non-isotropic fluxes.

> [Shelton-Taylor-Wecht, '05] [de Carlos-Guarino-Moreno, '09] [Damian-Diaz-Loaiza-Sabido, '13] **[Blåbäck-Danielsson-Dibitetto, '13]**

## WIDENING THE DS LANDSCAPE

[Blåbäck-Roest-IZ, '13]\*

Consider IIB  $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$  orbifold compactification with (isotropic) fluxes  $H_3$ ,  $F_3$   $(S, T_i = T, U_i = U)$ 

In this case, the Kähler potential is

 $K = -\log[-i(S + \bar{S})] - 3\log[-i(T + \bar{T})] - 3\log[-i(U + \bar{U})]$ 

\*[Simultaneously with Danielsson-Dibitetto, '13 in IIA]

 $W = P(a_i, U) - SP(b_i, U)$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 $a_i = \text{RR flux}, \ b_i = \text{NSNS flux}$  $\tilde{a}_i, \tilde{b}_i = \text{``non - perturbative flux''}$  $x = 2\pi/K$ , for gaugino condensation

 $W = P(a_i, U) - SP(b_i, U) + \left| P(\tilde{a}_i, U) - SP(\tilde{b}_i, U) \right| e^{ixT}$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 $a_i = \text{RR flux}, \ b_i = \text{NSNS flux}$  $\tilde{a}_i, \tilde{b}_i = \text{``non - perturbative flux''}$  $x = 2\pi/K$ , for gaugino condensation

 $W = P(a_i, U) - SP(b_i, U) + \left| P(\tilde{a}_i, U) - SP(\tilde{b}_i, U) \right| e^{ixT}$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 $a_i = \operatorname{RR} \operatorname{flux}, \ b_i = \operatorname{NSNS} \operatorname{flux}$  $\tilde{a}_i, \tilde{b}_i = \text{``non - perturbative flux''}$  $x = 2\pi/K$ , for gaugino condensation

Form of WNP motivated by

 $W = P(a_i, U) - SP(b_i, U) + \left| P(\tilde{a}_i, U) - SP(\tilde{b}_i, U) \right| e^{ixT}$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 $a_i = \text{RR flux}, \ b_i = \text{NSNS flux}$  $\tilde{a}_i, \tilde{b}_i = \text{``non - perturbative flux''}$  $x = 2\pi/K$ , for gaugino condensation

#### Form of WNP motivated by

 duality covariance in non-geometric fluxes and heterotic orbifolds\*

## HETEROTIC ORBIFOLDS

Heterotic  $T^6/\mathbb{Z}_N$  orbifolds fertile arena for (semi-)realistic particle physics model building. Free CFT, can compute LEEFT, N=1 sugra.

LEEFT inherits modular symmetry: W, K are modular covariant. In particular (STU) moduli dependent non-perturbative terms can be computed:

 $W_{NP} = A_3 e^{-aS} \eta^{\alpha}(T_i, U_j) + A_4 e^{-bS} \eta^{\beta}(T_i, U_j)$ 

[Parameswaran-Ramos-Sanchez-IZ, '11]

## HETEROTIC ORBIFOLDS

Heterotic  $T^6/\mathbb{Z}_N$  orbifolds fertile arena for (semi-)realistic particle physics model building. Free CFT, can compute LEEFT, N=1 sugra.

LEEFT inherits modular symmetry: W, K are modular covariant. In particular (STU) moduli dependent non-perturbative terms can be computed:

 $W_{NP} = A_3 e^{-aS} \eta^{\alpha} (T_i, U_j) + \overline{A_4 e^{-bS} \eta^{\beta} (T_i, U_j)}$ 

We found dS vacua with tachyons. Can we use Johan's et al. approach to include moduli dependent NP terms?

[Parameswaran-Ramos-Sanchez-IZ, '11]

 $W = P(a_i, U) - SP(b_i, U) + \left| P(\tilde{a}_i, U) - SP(\tilde{b}_i, U) \right| e^{ixT}$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 $a_i = \text{RR flux}, \ b_i = \text{NSNS flux}$  $\tilde{a}_i, \tilde{b}_i = \text{``non - perturbative flux''}$  $x = 2\pi/K$ , for gaugino condensation

#### Form of WNP motivated by

 duality covariance in non-geometric fluxes and heterotic orbifolds\*

 $W = P(a_i, U) - SP(b_i, U) + \left| P(\tilde{a}_i, U) - SP(\tilde{b}_i, U) \right| e^{ixT}$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 $a_i = \text{RR flux}, \ b_i = \text{NSNS flux}$  $\tilde{a}_i, \tilde{b}_i = \text{``non - perturbative flux''}$  $x = 2\pi/K$ , for gaugino condensation

#### Form of WNP motivated by

 duality covariance in non-geometric fluxes and heterotic orbifolds\*

fluxed instanton effects

 $W = P(a_i, U) - SP(b_i, U) + \left| P(\tilde{a}_i, U) - SP(\tilde{b}_i, U) \right| e^{ixT}$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 $a_i = \text{RR flux}, \ b_i = \text{NSNS flux}$  $\tilde{a}_i, \tilde{b}_i = \text{``non - perturbative flux''}$  $x = 2\pi/K$ , for gaugino condensation

#### Form of WNP motivated by

 duality covariance in non-geometric fluxes and heterotic orbifolds\*

fluxed instanton effects [Uranga, '09]

 $W = P(a_i, U) - SP(b_i, U) + \left| P(\tilde{a}_i, U) - SP(\tilde{b}_i, U) \right| e^{ixT}$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 $a_i = \text{RR flux}, \ b_i = \text{NSNS flux}$  $\tilde{a}_i, \tilde{b}_i = \text{``non - perturbative flux''}$  $x = 2\pi/K$ , for gaugino condensation

#### Form of WNP motivated by

 duality covariance in non-geometric fluxes and heterotic orbifolds\*

fluxed instanton effects [Uranga, '09]

expansion in small U

 $W = P(a_i, U) - SP(b_i, U) + \left[P(\tilde{a}_i, U) - SP(\tilde{b}_i, U)\right] e^{ixT}$ 

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

We look for dS vacua in a single step stabilisation of all moduli, avoiding SUSY adS stage, direct dS stable vacua: all moduli contribute to SUSY breaking, lifting the potential

 $V = e^{K} \left( |DW|^{2} - 3|W|^{2} \right)$ 

 $D_i W = \partial_i W + \partial_i K W$ 

## SEARCH FOR SOLUTIONS

We want to find stable dS solutions in an effective way

 $D_I V = 0$  $V_0 > 0$  $(m^2)_J^I = \frac{K^{IJ} D_K D_J V}{V} > 0$ 

to solve (numerically) this system we use various techniques

## THE ORIGIN

Any solution to the equations of motion can be represented by a solution in the origin of moduli space: S = T = U = i[Dibitetto-Guarino-Roest,'11]

The solution can be move to any point using symmetries of the potential, preserving the solution The equations reduce to quadratic equations in the fluxes!

 $D_I V = \sum (\text{fluxes})^2 (\text{scalars})^{(\text{mixed powers})}$ 

For the non perturbative term,  $f(U,S)e^{-ixT}$  at the origin we also take x = 1

[Danielsson-Dibitetto, '12]

Equations of motion are implied by SUSY

 $D_I W \equiv A_I + iB_I = 0 \quad \Rightarrow \quad D_I V = 0$ 

these SUSY parameters  $A_I, B_I$  are linear combinations of fluxes. Split these into SUSY and SUSY combinations.

When written in terms of the SUSY parameters, the eom`s take schematic form:

 $D_I V = \sum (\text{SUSY})^2 + \sum (\text{SUSY})(\text{SUSY})$ 

In other words, they become linear in the fluxes (SUSY combi)

For this to work, one needs at least as many SUSY & SUSY parameters (2N) as real fields (N=real fields):

Specify the SUSY parameters
Solve the N linear SUSY equations for N of the fluxes
Solve the N linear eom wrt the other N fluxes
Look for stable dS

With this approach, all fields take part in SUSY

## We have 6 real fields STU: need 12 fluxes.

We have 6 real fields STU: need 12 fluxes.

• The geometric fluxes in type IIB are 8 fluxes  $a_i, b_i$  in

 $P(f_i, U) = f_0 - 3f_1U + 3f_2U^2 - f_3U^3$ 

 We have 6 real fields STU: need 12 fluxes.
 The geometric fluxes in type IIB are 8 fluxes a<sub>i</sub>, b<sub>i</sub> in
 P(f<sub>i</sub>, U) = f<sub>0</sub> - 3f<sub>1</sub>U + 3f<sub>2</sub>U<sup>2</sup> - f<sub>3</sub>U<sup>3</sup>

 We add 4 more non-perturbative fluxes ã<sub>i</sub>

 $W = P(a_i, U) - SP(b_i, U) + P(\tilde{a}_i, U) e^{ixT}$ 

### **GENETIC ALGORITHM**

[Blåbäck-Danielsson-Dibitetto, '13] [Damian-Diaz-Loaiza-Sabido, '13]

1. Select a population at random (vectors of SUSY) 2. Calculate all desired quantities ( $V, m_J^I \dots$ ) 3. Mutate (perturb some parts of SUSY vectors) 4. Calculate properties for children 5. Select best solutions using fitness function 6. Repeat 3-6 until termination

## Solutions: abundant!

|                                              | Sol. 1    | Sol. 2                 | Sol. 3    | Sol. 4    | Sol. 5                 |
|----------------------------------------------|-----------|------------------------|-----------|-----------|------------------------|
| V <sub>0</sub>                               | 0.00113   | $2.23 \times 10^{-12}$ | 0.0000251 | 0.0000234 | $8.61 \times 10^{-12}$ |
| $\tilde{\gamma} - 1$                         | 0.0256    | $5.11 \times 10^{-11}$ | 0.00248   | 0.0160    | $6.05\times10^{-10}$   |
| $\left  \frac{ b_i }{ a_i } \right $         | 0.298     | 0.599                  | 1.32      | 0.208     | 0.997                  |
| $\left  \frac{ \tilde{a}_i }{ a_i } \right $ | 0.611     | 0.274                  | 0.528     | 0.621     | 0.000227               |
| Masses                                       | 39.0      | $2.11 \times 10^{10}$  | 1140.     | 76.2      | $2.20 \times 10^{9}$   |
|                                              | 19.7      | $8.71 \times 10^9$     | 387.      | 36.0      | $9.80 \times 10^8$     |
|                                              | 12.4      | $7.00 \times 10^{9}$   | 106.      | 19.6      | $2.45 \times 10^{8}$   |
|                                              | 9.74      | $3.41 \times 10^{9}$   | 18.4      | 11.4      | 490000.                |
|                                              | 0.00236   | $1.26 \times 10^{9}$   | 6.16      | 0.774     | 101000.                |
|                                              | 0.0000747 | $6.01 \times 10^8$     | 0.0000612 | 0.000252  | 100000.                |

|       | Sol. 1    | Sol. 2     | Sol. 3     | Sol. 4     | Sol. 5       |
|-------|-----------|------------|------------|------------|--------------|
| $A_1$ | -0.147286 | -0.0859982 | 0.0590861  | -0.0115235 | 0.000516097  |
| $A_2$ | 0.449418  | -1.58993   | -0.483429  | 0.165447   | 1.15243      |
| $A_3$ | -0.907814 | 0.4631     | -0.131249  | -0.144582  | -0.000587804 |
| $B_1$ | 0.377918  | -0.236806  | 0.0870739  | 0.0793589  | 0.00319387   |
| $B_2$ | 1.6678    | -1.12127   | 0.826607   | 0.259372   | -0.196848    |
| $B_3$ | 0.173821  | -0.047207  | -0.0614712 | 0.0902761  | -0.00969035  |

# $\tilde{\gamma} = \frac{|DW|^2}{3|W|^2}$

#### Stability/dS overlap very large (c.t. non-geo solutions)





#### solution 2 landscape

Constraints

Can get a reliable N=1 sugra solution

- Large Volume  $\mathcal{V} \sim r^6 \gg 1$
- Small string coupling  $g_s^{-1} \gg 1$

 $\operatorname{Im} T = \mathcal{V}^{2/3}$  $(\operatorname{Im} S)^{-1} = g_s$ 

Flux quantisation

by rescaling of the fluxes and  $x = 2\pi/K$ 

Constraints

Can get a reliable N=1 sugra solution

- Large Volume  $\mathcal{V} \sim r^6 \gg 1$
- Small string coupling  $g_s^{-1} \gg 1$
- Flux quantisation

by rescaling of the fluxes and  $x = 2\pi/K$ 

 $\operatorname{Im} T = \mathcal{V}^{2/3}$ 

 $(\operatorname{Im} S)^{-1} = g_s$ 

• Extended the dS landscape in type IIB flux compactifications

• One step (F-term) dS moduli stabilisation using moduli dependence of non-perturbative terms.

 Our work has motivated recent work on analytic method to construct abundant of dS vacua!
 [Kallosh-Linde-Vernocke-Wrasse,'14]

• Of course need to extend to more realistic STiUi case, compute NP term, relax of susy Ansatz, etc

# GRAZIE