DE SITTER VACUA FROM
NON-PERTURBATIVE FLUX
COMPACTIFICATIONS

IVONNE ZAVALA
CTN, GRONINGEN

STRING PHENOMENOLOGY 2014, ICTP

Based on 1312.5328 (PRD)
w/ Johan Blaback & Diederik Roest



OUTLINE

¢ Infroductory words

® Flux compactifications and de Sitter vacua:
KKLT and beyond

£ A single step F-term dS stabilisation:
the model, tools, solutions, constraints

£ Summary and outlook



INTRODUCTORY WORDS

Cosmic acceleration came to stay:

V(¢)  slow rollinflation

Early Universe: Inflation 0

Late Universe: Dark Energy ACDM Model

gtg{;s Dark
Gl Energy

(~68% energy density content - 3

Matter

made of Dark Energy) 265%

Cosmological Constant, A>0, consistent with data



e Crucial to make further progress in understanding
the origin of de Sitter (dS) vacua in string theory

e [f amount of dS vacua Is huge, siring theory
andscape may explain the tiny value of the CC
today A~ 1072 (if responsible for present day
acceleration!)

¢ |[n any case important to understand dS vacuo
INn ST/SUGRA. FInd systematic ways to generate
stable dS vacua
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Flux compactification in type IIB: N=1 sugra
[Giddings-Kachru-Polchiski, '01]

1. Fluxes generate a potential for dilaton S and
complex structure moduli, Ui. Kahler moduli T remain
as flat direction
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FLUX COMPACTIFICATIONS AND DE SITTER

Flux compactification in type IIB: N=1 sugra
[Giddings-Kachru-Polchiski, '01]

1. Fluxes generate a potential for dilaton S and

complex structure moduli, Ui. Kahler moduli T remain
as flat direction [Kachru-Kallosh-Linde-Trivedi, ‘03]

2. Add (mod. independent) non-
perturbative terms to stabilise Kahler
moduli: only adS can be obtained

3. Uplitt the minimum to a ds, positive

vacuum energy by adding an anti-D-
brane

‘/;fot I VAdS 0 Vuplz'ft
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In 4D N=1, via duality, non-geometric fluxes were
found and sfable dS vacua have been found In

STU models with isofropic and non-isofropic fluxes.

Shelton-Taylor-Wecht, '05]

de Carlos-Guarino-Moreno, '09]
'[Damian-Diaz-Loaiza-Sabido, '13]
Blabdck-Danielsson-Dibitetto, ’'13]




WIDENING THE DS LANDSCAPE

[Bldbd&ck-Roest-1Z, '13]*

Consider IIB T° /7y x Z» orbifold compactification with
(isotropic) fluxes Hs , F5 (S, T; =T,U; =U)

In this case, the Kahler potential is

K = —log|—i(S + S5)] — 3log|—(T + T)] — 3log|—¢(U + U)]

*ISimultaneously with Danielsson-Dibitetto, '13 in lIA]



We consider the free-level flux superpotential plus a
modull dependent non-perturbative term

W:P(CLZ,U)—SP([?Z,U)

P(f;, U) = fo =3HU +3/HU>= £U°
a; = RR flux, b; = NSNS flux

a;,b; = “non — perturbative flux”

r =27 /K , for gaugino condensation
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HETEROTIC ORBIFOLDS

Heterotic T°/ZN orbifolds fertile arena for (semi-)realistic
particle physics model building. Free CFI, can compute
LEEFT, N=1 sugra.

LEEFT Inherits modular symmeitry: W, K are modular
covariant. In particular (STU) moduli dependent non-
perturbative terms can be computed:

Wyp = Aze” % n*(T;,U;) + Aze 0" (T}, U;)

[Parameswaran-Ramos-Sanchez-IZ, '11]
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Heterotic T°/ZN orbifolds fertile arena for (semi-)realistic
particle physics model building. Free CFI, can compute
LEEFT, N=1 sugra.

LEEFT Inherits modular symmeitry: W, K are modular
covariant. In parficular (STU) moduli dependent non-
perturbafive terms can be computed:

Wyp = Aze” % n*(T;,U;) + Aze 0" (T}, U;)

We tound dS vacua with tachyons. Can we use Johan's
et al. approach 1o include moduli dependent NP termse

[Parameswaran-Ramos-Sanchez-IZ, '11]



We consider the free-level flux superpotential plus a
moduli dependent non-perturpbaftive term

W = P(a;,U) — SP(b;,U) + [P(&i7 ) — SP(b;. 17)] eioT

P(f;, U) = fo =3HU +3/HU>= £U°
a; = RR flux, b; = NSNS flux

a;,b; = “non — perturbative flux”

r =27 /K , for gaugino condensation

Form of WNP motivated by

e dudlity covariance in non-geometric fluxes and
heterotic orbifolds*



We consider the free-level flux superpotential plus a
moduli dependent non-perturpbaftive term

W = P(a;,U) — SP(b;,U) + [P(&i7 ) — SP(b;. 17)] eioT

P(f;, U) = fo =3HU +3/HU>= £U°
a; = RR flux, b; = NSNS flux

~

a;,b; = “non — perturbative flux”

r =27 /K , for gaugino condensation

Form of WNP motivated by

e dudlity covariance in non-geometric fluxes and
heterotic orbifolds*

e fluxed instanton effects



We consider the free-level flux superpotential plus a
moduli dependent non-perturpbaftive term

W = P(a;,U) — SP(b;,U) + [P(&i7 ) — SP(b;. 17)] eioT

P(f;, U) = fo =3HU +3/HU>= £U°
a; = RR flux, b; = NSNS flux

~

a;,b; = “non — perturbative flux”

r =27 /K , for gaugino condensation

Form of WNP motivated by

e dudlity covariance in non-geometric fluxes and
heterotic orbifolds*

e fluxed iInstanton effects [Uranga, '09]



We consider the free-level flux superpotential plus a
moduli dependent non-perturpbaftive term

W = P(a;,U) — SP(b;,U) + [P(&Z.’ ) — SP(b;. 17)] eioT

P(f;, U) = fo =3HU +3/HU>= £U°
a; = RR flux, b; = NSNS flux

~

a;,b; = “non — perturbative flux”

r =27 /K , for gaugino condensation

Form of WNP motivated by

e duality covariance in non-geometric fluxes and
heterotic orbifolds*

e fluxed iInstanton effects [Uranga, '09]

e expansion in small U



We consider the free-level flux superpotential plus a
moduli dependent non-perturpbaftive term

W = P(a;,U) — SP(b;,U) + [P(&i7 ) — SP(b;. 17)] eioT

P(f;,U) = fo — 31U + 3f,U° — f3U°

We look tfor dS vacua in a single step stabilisation of
all moduli, avoiding SUSY adS stage, direct dS stable
vacua: all moduli contribute to SUSY breaking, liffing
the potential

Ve DW |« — 3|W
= (|DW]? - 3w |

D,W = ;W + 0, KW



SEARCH FOR SOLUTIONS

We want to find stable dS solutions in an effective way

DV =0

Vo >0

1 KIJDKDJV
(mQ)J = V > ()

to solve (humerically) this system we use various
technigques



THE ORIGIN

Any solution to the equations of motion can be
represented by a solution in the origin of moduli space:

(2SS o AT st [Dibitefto-Guarino-Roest,'11]

The solution can be move to any point using symmetries
of the potential, preserving the solution

The equations reduce to guadratic equations in the fluxes!

DV = Z(ﬂuxeS)Q(scalars)(mixed powers)

For the non perturbative term, f(U, S)e= T at the origin we

also take
7 o |



SUSY Ansaiz
[Danielsson-Dibitetfto, '12]

Equations of motion are implied by SUSY
DiW=A;+:By=0 = D;V=0

these SUSY parameters A, B; are linear combinations of
fluxes. Split these into SUSY and SUSY combinations.

When written in terms of the SUSY parameters, the eom s
take schematic form:

D;V =) (SUSY)’+ ) (SUSY)(SUSY)

In other words, they become linear in the fluxes
(SUSY combi)



For this to work, one needs at least as many SUSY & SUSY
oarameters (2N) as real fields (N=real fields):

= Specify the SUSY parameters
= Solve the N linear SUSY equations for N of the fluxes
= Solve the N linear eom wrt the other N fluxes

= | 0ok for stable dS

With this approach, all fields take part in SUSY



¢ We have 6 realfields STU: need 12 fluxes.
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¢ We have 6 realfields STU: need 12 fluxes.

¢ The geometric fluxes in type IIB are 8 fluxes a;, b; In
P(f;,U) = fo— 3f1U + 3fU% — f3U?
* We add 4 more non-perturbative fluxes a;

W = P(a;,U) — SP(b;,U) + P(a;,U) e**



GENETIC ALGORITHM

[Bldbdck-Danielsson-Dibitetto, '13]
[Damian-Diaz-Loaiza-Sabido, '13]

1. Select a population at random (vectors of SUSY)
2. Calculate all desired quantities (V, m7 .. )

3. Mutate (perturb some parts of SUSY vectors)

4. Calculate properties for children

5. Select best solutions using fitness function

6. Repeat 3-6 until termination



Solutions: abundant!

|l o

5—1| 0.0256 |5.11x10-11| 0.00248 0.0160 |6.05 x 10— 10 Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

I 0.599 0.997 I —0.147286 | —0.0859982| 0.0590861 |[—0.0115235| 0.000516097
I 0.449418 | —1.58993 | —0.483429 | 0.165447 1.15243
— 5 I —0.907814| 0.4631 —0.131249 | —0.144582 | —0.000587804
39.0 2.11 x 10 1140. 76.2 2.20 x 10
% % I 0.377918 | —0.236806 | 0.0870739 | 0.0793589 | 0.00319387
19.7 8.71 x 109 387. 36.0 9.80 x 108
I 1.6678 —1.12127 | 0.826607 0.259372 —0.196848

12.4 7.00 x 109 106. 19.6 2.45 x 108

9.74 3.41 x 102 18.4 11.4 490000. Bg I 0.173821 —0.047207 | —0.0614712| 0.0902761 —0.00969035

Masses

0.00236 1.26 x 109 6.16 0.774 101000.

0.0000747 6.01 x 108 0.0000612 0.000252 100000.

solution 2 Icmdscape

Stability/dS overlap very -
large (c.t. non-geo solutions) B s o

stability



Constraints
Can get areliable N=1 sugra solution
e Large Volume V~r’>1 ImT = V?/3
e Small string coupling ¢;'>1 AS= =g

e Flux quantisation

by rescaling of the fluxes and « =27 /K



Constraints

Can get areliable N=1 sugra solution
e Large Volume V~r®>1 e e
e Small string coupling ¢;'>1 AS= =g

e Flux quantisation

by rescaling of the fluxes and « =27 /K

Rescaled Solution 5 )

{ao,al,az,ag,bo,bl,bg,bg,K} = {—1,4, 1, —12,4,0, —1,0,67} ‘

\

{Go, a1, a9, a3} ~ {0.180917, —0.0186322, 0.0494774,0.0191168}

|V o2 o el
m; ~ {70027.5,29274.4,6043.98, 338.867, 16.0712, 7.88339}

YV ~50, g5~0.2 %
— s D . A it i s . "5 IR

rww,mv




SUMMARY/OUTLOOK

e Extended the dS landscape In type I[IB flux
compactifications

e One step (F-tferm) dS moduli stabilisation using
moduli dependence of non-perturbative terms.

e Qur work has motivated recent work on analyfic
method to construct abundant of dS vacua!

[Kallosh-Linde-Vernocke-Wrasse, ' 14]

e Of course need to extend 1o more realistic STiUi
case, compute NP term, relax of susy Ansatz, efc






