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INTRODUCTORY WORDS 

Cosmic acceleration came to stay:

Early Universe: Inflation

Late Universe: Dark Energy ΛCDM Model

(~68% energy density content 
made of Dark Energy)

Cosmological Constant, Λ>0, consistent with data 

φφi φf

 slow roll inflationV (φ)



• Crucial to make further progress in understanding 
the origin of de Sitter (dS) vacua in string theory

• If amount of dS vacua is huge, string theory 
landscape may explain the tiny value of the CC 
today                 (if responsible for present day 
acceleration!)

⇤ ⇠ 10�120

• In any case important to understand dS vacua 
in ST/SUGRA. Find systematic ways to generate 
stable dS vacua 



FLUX COMPACTIFICATIONS AND DE SITTER 

Flux compactification in type IIB: N=1 sugra 

1. Fluxes generate a potential for dilaton S and 
complex structure moduli, Ui. Kähler moduli T remain 
as flat direction

[Giddings-Kachru-Polchiski, ’01]



[Kachru-Kallosh-Linde-Trivedi, ‘03]
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and the low-energy theory is pure N = 1 supersymmet-
ric SU(Nc) gauge theory. This theory undergoes gluino
condensation, which results in a nonperturbative super-
potential

Wgauge = Λ3
Nc

= Ae
2πiρ
Nc (10)

where ΛNc is the dynamical scale of the gauge theory,
and the coefficient A is determined by the energy scale
below which the the SQCD theory is valid (There are also
threshold corrections in general, these contribute sub-
leading effects.) We see that this leads to an exponential
superpotential for ρ similar to the one above (but with a
fractional multiple of ρ in the exponent, since the gaug-
ino condensate looks like a fractional instanton effect in
W ).

So effects 1) and 2) have rather similar consequences
for our analysis; we will simply assume that there is
an exponential superpotential for ρ at large volume. In
our companion paper [14], we investigate some interest-
ing possibilities for cosmology if there are multiple non-
Abelian gauge factors. Using the fourfolds in [27], it is
easy to construct examples (with h1,1(X) = 2) which
could yield gauge groups of total rank up to ∼ 30. The
results of [39] suggest that much larger ranks should be
possible.

One important comment is in order before we proceed.
Besides corrections to the superpotential of the kind dis-
cussed above, there are also corrections to the Kähler
potential (see e.g. [40] for a calculation of some lead-
ing corrections). In our analysis we will ensure that the
volume modulus is stabilized at values which are para-
metrically large compared to the string scale. This makes
our neglect of Kähler corrections self consistent.

C. Supersymmetric AdS Vacua

Here, we show that the corrections to the superpoten-
tial considered above can stabilize the volume modulus,
leading to a susy preserving AdS minimum. We perform
an analysis of the vacuum structure just keeping the tree-
level Kähler potential

K = −3 ln[−i(ρ− ρ)] (11)

and a superpotential

W = W0 + Aeiaρ . (12)

W0 is a tree level contribution which arises from the
fluxes. The exponential term arises from either of the
two sources above, and the coefficient a can be deter-
mined accordingly. In keeping with the fact that the
complex structure moduli and the dilaton have received a
mass (5), we have set them equal to their VEVs and con-
sider only the low-energy theory of the volume modulus.
To avoid the need to worry about additional open-string
moduli, we assume the tadpole condition (1) has been

solved by turning on only flux, i.e. with no additional
D3 branes.

At a supersymmetric vacuum DρW = 0. We simplify
things by setting the axion in the ρ modulus to zero, and
letting ρ = iσ. In addition we take A, a and W0 to be all
real and W0 negative. The minimum then lies at

DW = 0 → W0 = −Ae−a σcr (1 +
2

3
aσcr) (13)

The potential, V = eK
(

GρρDρWDρW − 3|W |2
)

, at
the minimum is negative and equal to

VAdS = (−3eKW 2)AdS = −
a2A2e−2 a σcr

6 σcr
(14)

We see that we have stabilized the volume modulus while
preserving supersymmetry. It is important to note that
the AdS minimum is quite generic. Any corrections to
the Kähler potential will still result in a susy minimum
which solves (13).

A few comments are in order before we proceed. A
controlled calculation requires that σ $ 1, this ensures
that the supergravity approximation is valid and the α′

corrections to the Kähler potential are under control. It
also requires that aσ > 1 so that the contribution to
the superpotential from a single (fractional) instanton is
reliable. Generically, if the fluxes break supersymmetry,
W0 ∼ O(1), and these conditions will not be met. How-
ever it is reasonable to expect that by tuning fluxes one
can arrange so that W0 % 1. In these circumstances we
see from (13) that aσ > 1. Taking a < 1, one can then
ensure that σ $ 1, as required.

As an illustrative example we consider W0 = −10−4,
A = 1, a = 0.1. This results in a minimum at σcr ∼ 113.
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FIG. 1: Potential (multiplied by 1015) for the case of expo-
nential superpotential with W0 = −10−4, A = 1, a = 0.1.
There is an AdS minimum.

Another possibility to get a minimum at large vol-
ume is to consider a situation where the fluxes preserve
susy, and the superpotential involves multiple exponen-
tial terms, i.e. “racetrack potentials” for the stabilization
of ρ [41]. Such a superpotential could arise from multiple
stacks of seven branes wrapping four cycles which cannot

susy AdS

1. Fluxes generate a potential for dilaton S and 
complex structure moduli, Ui. Kähler moduli T remain 
as flat direction

2. Add (mod. independent) non-
perturbative terms to stabilise Kähler 
moduli: only adS can be obtained 



FLUX COMPACTIFICATIONS AND DE SITTER 

Flux compactification in type IIB: N=1 sugra 

3. Uplift the minimum to a dS, positive 
vacuum energy by adding an anti-D-
brane

6

100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1

1.2

V

σ

FIG. 2: Potential (multiplied by 1015) for the case of ex-
ponential superpotential and including a D

σ3 correction with

D = 3 × 10−9 which uplifts the AdS minimum to a dS mini-
mum.

It is important to mention that the value of the volume
modulus shifts only slightly in going from the AdS mini-
mum to the new dS minimum. This means if the volume
was large in the AdS minimum to begin with, it will con-
tinue to be large in the new dS minimum, guaranteeing
that our approximations are valid.

If one wants to use this potential to describe the
present stage of acceleration of the universe, one needs
to fine-tune the value of the potential in dS minimum to
be V0 ∼ 10−120 in units of Planck density. In principle,
one could achieve it, e.g., by fine tuning D. However,
the tuning we can really do by varying the fluxes etc. in
the microscopic string theory is limited, though it may
be possible to tune quite well if there are enough three-
cycles in M .

IV. HOW STABLE IS THE DS VACUUM?

The radial modulus σ = Im ρ has a kinetic term
3

4σ2 (∂σ)2 which follows from the Kähler potential (3).
For cosmological purposes it is convenient to switch to

the canonical variable ϕ =
√

3
2 lnσ =

√

3
2 ln(Im ρ),

which has a kinetic term 1
2 (∂ϕ)2. In what follows we

will use the field ϕ and it should not be confused with
the dilaton, φ.

A. General theory

The dS vacuum state ϕ0 corresponding to the local
minimum of the potential with V0 > 0 is metastable.
Therefore it may decay, and then the universe will roll to-
wards large values of the field ϕ and decompactify. Here
we would like to address two important questions:

1) Do our dS vacua survive for a large number of
Planck times? For instance, if we fine tune to get a small
cosmological constant, is the dS vacuum sufficiently sta-

ble to survive during the 1010 years of the cosmologi-
cal evolution? If the answer is positive, one can use the
dS minimum for the phenomenological description of the
current stage of acceleration (late-time inflation) of the
universe.

2) Is the typical decay time of the dS vacuum longer
or shorter than the recurrence time tr ∼ eS0 , where
S0 = 24π2

V0
is the dS entropy [43]? If the decay time

is longer than tr ∼ eS0 , one may need to address the
issues about the consistency of the stringy description of
dS space raised in [2, 5, 8].

We will argue that the lifetime of the dS vacuum in our
models is not too short and not too long: it is extremely
large in Planck times (in particular, one can easily make
models which live longer than the cosmological timescale
∼ 1010 years), and it is much shorter than the recurrence
time tr ∼ eS0 .

In order to analyse this issue we will remember, fol-
lowing Coleman and De Luccia [44], basic features of the
tunneling theory taking into account gravitational effects.

To describe tunneling from a local minimum at ϕ = ϕ0

one should consider an O(4)-invariant Euclidean space-
time with the metric

ds2 = dτ2 + b2(τ)(dψ2 + sin2 ψ dΩ2
2) . (17)

The scalar field ϕ and the Euclidean scale factor (three-
sphere radius) b(τ) obey the equations of motion

ϕ′′ + 3
b′

b
ϕ′ = V,ϕ, b′′ = −

b

3
(ϕ′2 + V ) , (18)

where primes denote derivatives with respect to τ . (We
use the system of units Mp = 1.)

These equations have several instanton solutions
(ϕ(τ), b(τ)). The simplest of them are the O(5) invari-
ant four-spheres one obtains when the field ϕ sits at one
of the extrema of its potential, and b(τ) = H−1 sin Hτ .
Here H2 = V

3 , and V (ϕ) corresponds to one of the ex-
trema. In our case, there are two trivial solutions of this
type. One of them describes time-independent field cor-
responding to the minimum of the effective potential at
ϕ = ϕ0, with V0 = V (ϕ0). Another one is related to the
maximum of the potential at ϕ = ϕ1, with V1 = V (ϕ1).

Coleman-De Luccia (CDL) instantons are more com-
plicated. They describe the field ϕ(τ) beginning in a
vicinity of the false vacuum ϕ0 at τ = 0, and reaching
some constant value ϕf > ϕ1 at τ = τf , where b(τf ) = 0.
It is tempting to interpret CDL instantons as the tunnel-
ing trajectories interpolating between the different vacua
of the theory. However, one should be careful with this
interpretation because the trajectories ϕ(τ) for CDL in-
stantons do not begin exactly in the metastable minimum
ϕ0 and do not end exactly in the absolute minimum of
the effective potential. We will discuss this issue later.

According to [44], the tunneling probability is given by

P (ϕ) = e−S(ϕ)+S0, (19)

V

[Giddings-Kachru-Polchiski, ’01]
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FIG. 1: Potential (multiplied by 1015) for the case of expo-
nential superpotential with W0 = −10−4, A = 1, a = 0.1.
There is an AdS minimum.

Another possibility to get a minimum at large vol-
ume is to consider a situation where the fluxes preserve
susy, and the superpotential involves multiple exponen-
tial terms, i.e. “racetrack potentials” for the stabilization
of ρ [41]. Such a superpotential could arise from multiple
stacks of seven branes wrapping four cycles which cannot

susy AdS

susy dS

2. Add (mod. independent) non-
perturbative terms to stabilise Kähler 
moduli: only adS can be obtained 

[Kachru-Kallosh-Linde-Trivedi, ‘03]

1. Fluxes generate a potential for dilaton S and 
complex structure moduli, Ui. Kähler moduli T remain 
as flat direction
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dS vacua from flux compactifications triggered  
lot of work on moduli stabilisation and stable dS 
solutions in string theory/supergravity

In 4D N=1, via duality, non-geometric fluxes were 
found and stable dS vacua have been found in 
STU models with isotropic and non-isotropic fluxes. 

[Shelton-Taylor-Wecht, ’05]

[de Carlos-Guarino-Moreno, ’09]
[Damian-Diaz-Loaiza-Sabido, ’13]
[Blåbäck-Danielsson-Dibitetto, ’13]

In type IIA, D-term uplift, F-term uplift, large volume 
scenario, heterotic (CY&orbifolds), M-theory . . . 



WIDENING THE DS LANDSCAPE

Consider IIB                      orbifold compactification with 
(isotropic) fluxes             

[Blåbäck-Roest-IZ, ’13]*

*[Simultaneously with Danielsson-Dibitetto, ’13 in IIA]

In this case, the Kähler potential is

K = � log[�i(S +

¯S)]� 3 log[�i(T +

¯T )]� 3 log[�i(U +

¯U)]

T 6/Z2 ⇥ Z2

H3 , F3 (S, Ti = T, Ui = U)



We consider the tree-level flux superpotential plus a 
moduli dependent non-perturbative term 

P (fi, U) = f0 � 3f1U + 3f2U
2 � f3U

3

bi = NSNS flux

ãi,˜bi = “non� perturbative flux”

ai = RR flux ,

x = 2⇡/K , for gaugino condensation

W = P (ai, U)� SP (bi, U)
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• duality covariance in non-geometric fluxes and 
heterotic orbifolds*
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Heterotic        orbifolds fertile arena for (semi-)realistic 
particle physics model building. Free CFT, can compute 
LEEFT, N=1 sugra.

LEEFT inherits modular symmetry:   are modular 
covariant. In particular (STU) moduli dependent non-
perturbative terms can be computed:

HETEROTIC ORBIFOLDS

T 6/ZN

W,K

[Parameswaran-Ramos-Sanchez-IZ, ’11]
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Heterotic        orbifolds fertile arena for (semi-)realistic 
particle physics model building. Free CFT, can compute 
LEEFT, N=1 sugra.

LEEFT inherits modular symmetry:   are modular 
covariant. In particular (STU) moduli dependent non-
perturbative terms can be computed:

We found dS vacua with tachyons. Can we use Johan’s 
et al. approach to include moduli dependent NP terms? 
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[Parameswaran-Ramos-Sanchez-IZ, ’11]
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ãi,˜bi = “non� perturbative flux”

ai = RR flux ,

• duality covariance in non-geometric fluxes and 
heterotic orbifolds*

x = 2⇡/K , for gaugino condensation

W = P (ai, U)� SP (bi, U) +
h
P (ã
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3

bi = NSNS flux
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• duality covariance in non-geometric fluxes and 
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[Uranga, ’09]
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We consider the tree-level flux superpotential plus a 
moduli dependent non-perturbative term 

Form of WNP motivated by 

P (fi, U) = f0 � 3f1U + 3f2U
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3

bi = NSNS flux

ãi,˜bi = “non� perturbative flux”

ai = RR flux ,

• duality covariance in non-geometric fluxes and 
heterotic orbifolds*

[Uranga, ’09]

x = 2⇡/K , for gaugino condensation

W = P (ai, U)� SP (bi, U)

• fluxed instanton effects

• expansion in small U

+
h
P (ã

i

, U)� SP (b̃
i

, U)
i
eixT



We consider the tree-level flux superpotential plus a 
moduli dependent non-perturbative term 

We look for dS vacua in a single step stabilisation of 
all moduli, avoiding SUSY adS stage, direct dS stable 
vacua: all moduli contribute to SUSY breaking, lifting 
the potential

V = eK
�
|DW |2 � 3|W |2

�

DiW = @iW + @iKW

W = P (ai, U)� SP (bi, U)

P (fi, U) = f0 � 3f1U + 3f2U
2 � f3U

3

+
h
P (ã

i

, U)� SP (b̃
i

, U)
i
eixT



SEARCH FOR SOLUTIONS

We want to find stable dS solutions in an effective way

to solve (numerically) this system we use various 
techniques

DIV = 0

V0 > 0

�
m2

�I
J
=

KIJDKDJV

V > 0



THE ORIGIN

[Dibitetto-Guarino-Roest,’11]

Any solution to the equations of motion can be 
represented by a solution in the origin of moduli space:

The equations reduce to quadratic equations in the fluxes! 

S = T = U = i

The solution can be move to any point using symmetries 
of the potential, preserving the solution

For the non perturbative term,                      at the origin we 
also take

x = 1

DIV =

X
(fluxes)

2

(scalars)

(mixed powers)

f(U, S)e�ixT



SUSY Ansatz
[Danielsson-Dibitetto, ’12]

Equations of motion are implied by SUSY 

When written in terms of the SUSY parameters, the eom`s 
take schematic form:

DIW ⌘ AI + iBI = 0 ) DIV = 0

In other words, they become linear in the fluxes
 (SUSY combi)

these SUSY parameters             are linear combinations of 
fluxes. Split these into SUSY and SUSY combinations. 

DIV =
X

(SUSY)2 +
X

(SUSY)(SUSY)

AI , BI



For this to work, one needs at least as many SUSY & SUSY 
parameters (2N) as real fields (N=real fields):

➡ Specify the SUSY parameters

➡ Solve the N linear SUSY equations for  N of the  fluxes

➡ Solve the N linear eom wrt the other N fluxes 

➡ Look for stable dS  

With this approach, all fields take part in SUSY 



We have 6 real fields STU: need 12 fluxes.
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We have 6 real fields STU: need 12 fluxes.

The geometric fluxes in type IIB are 8 fluxes            in 

P (fi, U) = f0 � 3f1U + 3f2U
2 � f3U

3

ai, bi

We add 4 more non-perturbative fluxes 

W = P (a
i

, U)� SP (b
i

, U) + P (ã
i

, U) eixT

ãi



GENETIC ALGORITHM

[Damian-Diaz-Loaiza-Sabido, ’13]
[Blåbäck-Danielsson-Dibitetto, ’13]

1. Select a population at random (vectors of SUSY) 

2. Calculate all desired quantities (                )

3. Mutate (perturb some parts of SUSY vectors)

4. Calculate properties for children 

5. Select best solutions using fitness function 

6. Repeat 3-6 until termination

V,mI
J . . .



Solutions: abundant!

3

for the solution to be preserved. We have also introduced
a parameter � that represents an overall scaling of the
fluxes that is always possible to perform. The potential
scales as V ! N2� V , and the normalised masses remain
invariant. For the special case of gaugino condensation,
where x = 2⇡

K , the scaling (9) implies that we need to
scale K as: K ! N4↵ K .

Given a solution, we can achieve a large volume and
small string coupling regime, via a suitable rescaling of
the parameters. A drawback may be that this rescaling
requires a small value of the parameter x, which in the
case of gaugino condensation, translates into a large rank
of the gauge group K. In the context of non-compact
Calabi-Yaus, it has been discussed that arbitrarily high
gauge group ranks are possible [34]. In the compact case
the situation turns out to be more restrictive, but rela-
tively large values are possible [16].

Finally, we should also consider the tadpole cancella-
tion condition, which is a quadratic combination of flux
parameters, H3 ^ F3:

ND3 = a3b0 � 3a2b1 + 3a1b2 � a0b3, (10)

scaling according to ND3 ! N12↵+2� ND3. As the tad-
pole is bounded from below by the orientifold contribu-
tion, one should worry about this rescaling in the case
of negative ND3. Indeed, in all our examples below, the
tadpole will be negative. In order to avoid that the large
volume limit pushes the tadpole below its lower limit,
one can choose the � parameter suitably.

Notice that there is no particular requirement of the
value for the complex structure modulus U at the mini-
mum. Therefore, we keep this field to the origin. How-
ever, we could rescale it as well to small values in such
a way that the power expansion in the non-perturbative
function P3 can be truncated at the third power consis-
tently.

We next consider the relevance of possible perturba-
tive corrections to the Kähler potential since these could
dominate over the non-perturbative contributions to the
superpotential, rendering the present set-up inconsistent.

Perturbative contributions scale with KP ⇠ 1/(Vg3/2s ).
Since our method to find solutions starts with all fields
at the origin and fluxes of the same order, all contribu-
tions in the superpotential are of the same order. After
making the above described rescalings, all terms in the
potential scale in the same way and once perturbative
Kähler contributions are added, we can write

Vfull ! N2� (V +KPV ) ⇠ N2�
⇣
V +N�6↵+ 3�

2 V
⌘
,

(11)
hence KP contributions will be suppressed with a factor

N�6↵+ 3�
2 compared to the potential calculated here. We

can therefore safely neglect these by a suitable choice of
↵,�.

Explicit de Sitter solutions. We performed five indi-
vidual searches where additional criteria were required.
These additional criteria were chosen to be:

1, 2 : maximize and minimize �̃ = |DW |2/(3|W |2)
(while keeping �̃ > 1),
3, 4 : maximize and minimize the scale between the

fluxes |bi|/|ai|,
5 : minimize the scale between the fluxes |ãi|/|ai|.

Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

V
0

0.00113 2.23 ⇥ 10

�12

0.0000251 0.0000234 8.61 ⇥ 10

�12

�̃ � 1 0.0256 5.11 ⇥ 10

�11

0.00248 0.0160 6.05 ⇥ 10

�10

|bi|
|ai|

0.298 0.599 1.32 0.208 0.997

|ãi|
|ai|

0.611 0.274 0.528 0.621 0.000227

Masses

39.0

19.7

12.4

9.74

0.00236

0.0000747

2.11 ⇥ 10

10

8.71 ⇥ 10

9

7.00 ⇥ 10

9

3.41 ⇥ 10

9

1.26 ⇥ 10

9

6.01 ⇥ 10

8

1140.

387.

106.

18.4

6.16

0.0000612

76.2

36.0

19.6

11.4

0.774

0.000252

2.20 ⇥ 10

9

9.80 ⇥ 10

8

2.45 ⇥ 10

8

490000.

101000.

100000.

TABLE I. Properties of the solutions. The masses are nor-
malised with the potential and all scales are given in Planck
units.

The main properties of our solutions are presented in
Table I, while the ⇠⇠⇠SUSY parameters for these solutions
can be found in Table II. A number of general features
can be extracted from these examples. Firstly, it follows
that the ⇠⇠⇠SUSY and AdS scales are always of the same
order and cannot be separated. The maximum ratio be-
tween the scales is ⇡ 1.0256, as follows from solution 1.
Similarly, one can approach a ratio equal to one with very
good accuracy, as illustrated by solution 2. Another ob-
servation from this solution is that the lowest mass can
be made very large compared to the potential energy V0.
Finally, as the flux parameters are of decreasing order,

{ã0, ã1, ã2, ã3} ⇡ {0.0835, 0.0702, 0.0372, 0.00921} (12)

the small-U expansion of (6) is justified in this case.
A second point is that we tried to achieve a hierarchy

between the RR- and NSNS-fluxes. The reason for doing
so is the small coupling limit; as the rescaling (9) acts
di↵erent on these two set of fluxes, we would like to start
o↵ with a hierarchy of values for these. After the rescaling
we end up at small coupling with fluxes of the same order.
As can be seen from solutions 3 and 4, it is possible to
achieve a small degree of separation between the two sets
of fluxes. However this separation is only due to large
contributions from the non-perturbative fluxes.
Finally, in solution 5 we were able to create a hierarchy

between the perturbative and non-perturbative fluxes.
This hierarchy is only possible to achieve with the loss
of a hierarchy of the NSNS and RR sector. The reason
for this lies in the structure of the equation of motion for
S. On the level of the perturbative superpotential this
equation forces the so-called imaginary self-dual (ISD)
condition for the flux G3 = F3 + SH3 [2]. Via the ad-
dition of small non-perturbative contributions it is only
possible to perturb this condition. This is why we see in
solutions 3 and 4 that the non-perturbative terms con-
tribute much more than in solution 5. For the same rea-

4

son, i.e. small non-perturbative contributions cannot sig-
nificantly change the ISD condition, we are not able to
find solutions without net O-planes, as is argued to be
possible in type IIA [22].

For the most interesting solution 5, we observe also
that because the non-perturbative contributions are sup-
pressed, one may expect a separation of masses among
S,U and T . Indeed the last two smallest masses in Table
I correspond to the eigenvectors which are dominated by
the real and imaginary parts of T . The other small mass
corresponds mostly to a combination of the S,U axions.
Moreover, the lowest mass is still significantly larger than
the potential.
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FIG. 1. The stability (non-normalised mass) (left) and dS
(right) landscape of Sol. 2. The solution is located at the
origin. The pictures are a 2D slice of the parameters x =
�e(9B1 � 2B2 � B2)/2 and y = �e(7A1 � 2A2 � A3)/6 that
are part of a linear combination of AI , BI in eq. (7).

Finally, it is interesting to consider the interplay be-
tween stability and dS solutions. For non-geometric sta-
ble dS solutions, the intersection of stability and dS over-
lap is thin sheets because of small di↵erences in the shape
of these landscapes [29], thus requiring fine-tuning. This
is not the case for the present non-perturbative solutions.
The stability and potential landscapes, plotted in Figure
1, have noticeably di↵erent shapes. This implies that
there are sizeable intersection regions5.

This non-trivial overlap will be important when taking
flux quantisation into account. By scaling N large, the
parameters AI and BI become approximately integers.
One can then make ai, bi integers by an appropriate trun-
cation. This will slightly modify the solution, (inversely)
related to order to which we rescale N . However, be-
cause of the large intersection areas of stability and dS,
only a very coarse truncation would significantly modify
the solution and possibly spoil stability and/or dS. In our
case, where the orientifold tadpole gives a bound on how
much rescaling can take place, the truncation would have
to be indeed quite coarse. On account of the large stable
dS regions, one can achieve quantisation without losing

stability nor positive potential energy. We have explic-
itly checked this for solution 5, which can be rescaled and
truncated to the flux parameters

{a0, a1, a2, a3, b0, b1, b2, b3} = {�1, 4, 1,�12, 4, 0,�1, 0} ,
(13)

which gives a tadpole NO3 = 60 and rank K = 67. This
has a stable dS solution at

{S, T, U}⇡{.00616+ie1.32,�.000456+ie2.63,�.117+ie.0728}
(14)

which is a perturbation of our solution 5.

Discussion. In summary, we considered a novel one-step
mechanism to stabilise all geometric moduli of type IIB
toroidal compactifications in a dS vacuum, using the non-
trivial moduli dependence of the tree-level superpotential
and the non-perturbative contributions. The latter is
motivated by duality invariance of string theory, and can
also be seen as a small-field expansion. Our approach im-
proves the three-step KKLT mechanism by including the
complex structure in the non-perturbative piece allowing
us to stabilise all moduli at once in a dS vacua, avoiding
also the introduction of explicitly ⇠⇠⇠SUSY terms, such as
anti-D-branes. We have presented a number of explicit
stable dS solutions, amongst one with quantised fluxes.

We view our results as very compelling arguments
to extend the dS landscape in type IIB flux compact-
ifications. They represent a first step towards a new
direction allowing for a more complete landscape of
stable dS vacua.
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Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

A
1

�0.147286 �0.0859982 0.0590861 �0.0115235 0.000516097

A
2

0.449418 �1.58993 �0.483429 0.165447 1.15243

A
3

�0.907814 0.4631 �0.131249 �0.144582 �0.000587804

B
1

0.377918 �0.236806 0.0870739 0.0793589 0.00319387

B
2

1.6678 �1.12127 0.826607 0.259372 �0.196848

B
3

0.173821 �0.047207 �0.0614712 0.0902761 �0.00969035

TABLE II. These are the values of the ⇠⇠⇠SUSY parameters
defined by (7) that gives the solutions displayed in Table I
(rounded to six digits).

5
This fact does not seem to hinge on the duality invariant Ansatz

(6); we expect it to hold for more general moduli-dependence.
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This non-trivial overlap will be important when taking
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cation. This will slightly modify the solution, (inversely)
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which gives a tadpole NO3 = 60 and rank K = 67. This
has a stable dS solution at
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which is a perturbation of our solution 5.
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mechanism to stabilise all geometric moduli of type IIB
toroidal compactifications in a dS vacuum, using the non-
trivial moduli dependence of the tree-level superpotential
and the non-perturbative contributions. The latter is
motivated by duality invariance of string theory, and can
also be seen as a small-field expansion. Our approach im-
proves the three-step KKLT mechanism by including the
complex structure in the non-perturbative piece allowing
us to stabilise all moduli at once in a dS vacua, avoiding
also the introduction of explicitly ⇠⇠⇠SUSY terms, such as
anti-D-branes. We have presented a number of explicit
stable dS solutions, amongst one with quantised fluxes.

We view our results as very compelling arguments
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ifications. They represent a first step towards a new
direction allowing for a more complete landscape of
stable dS vacua.
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�̃ =
|DW |2

3|W |2

stability dS

solution 2 landscape

Stability/dS overlap very 
large (c.t. non-geo solutions)



Constraints

Can get a reliable N=1 sugra solution

• Large Volume 

• Small string coupling 

• Flux quantisation

V ⇠ r6 � 1

g�1
s � 1

ImT = V2/3

(ImS)�1 = gs

by rescaling of the fluxes and                   x = 2⇡/K



Constraints

Can get a reliable N=1 sugra solution

• Large Volume 

• Small string coupling 

• Flux quantisation

V ⇠ r6 � 1

g�1
s � 1

ImT = V2/3

(ImS)�1 = gs

by rescaling of the fluxes and                   x = 2⇡/K

{ã0, ã1, ã2, ã3} ⇡ {0.180917,�0.0186322, 0.0494774, 0.0191168}

{a0, a1, a2, a3, b0, b1, b2, b3,K} = {�1, 4, 1,�12, 4, 0,�1, 0, 67}

V0 ⇠ 1.3⇥ 10�7

mi ⇠ {70027.5, 29274.4, 6043.98, 338.867, 16.0712, 7.88339}

V ⇠ 50 , gs ⇠ 0.2

Rescaled Solution 5

)



SUMMARY/OUTLOOK

• Extended the dS landscape in type IIB flux 
compactifications 

• One step (F-term) dS moduli stabilisation using 
moduli dependence of non-perturbative terms. 

• Our work has motivated recent work on analytic 
method to construct abundant of dS vacua!  

• Of course need to extend to more realistic STiUi 
case, compute NP term, relax of susy Ansatz, etc

[Kallosh-Linde-Vernocke-Wrasse,’14]
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