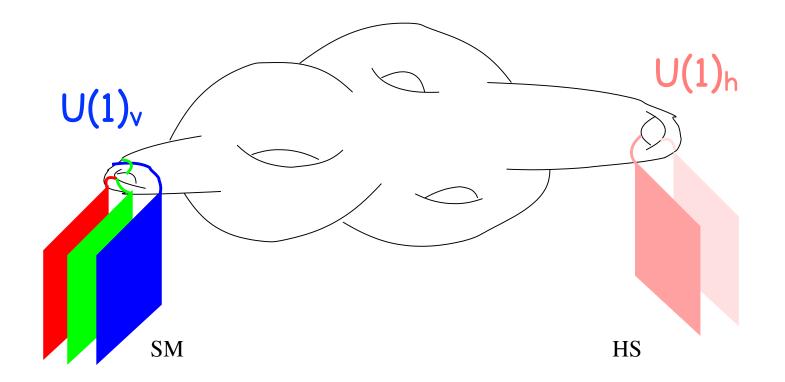
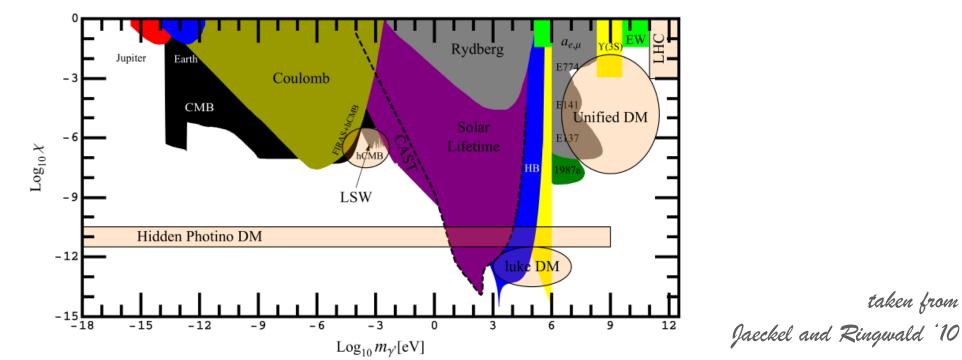
U(1) mixing and F-theory GUTs

fernando marchesano



U(1) mixing and F-theory GUTs

fernando marchesano


Based on: F.M., Regalado, Zoccarato [1406.2729]

- Typical type II scenario
 - Open string U(1) from visible gauge sector
 - Extra U(1) from hidden gauge sector

- Typical type II scenario
 - Open string U(1) from visible gauge sector
 - Extra U(1) from hidden gauge sector, compatible with experiment as massless or very light hidden gauge symmetries

$$\mathcal{L}_{4d} \supset -\frac{1}{4} \sum_{i=v,h} F^{(i)}_{\mu\nu} F^{(i)\,\mu\nu} + \frac{1}{2} \frac{\chi_{vh}}{F^{(v)}_{\mu\nu}} F^{(h)\,\mu\nu} + \frac{1}{2} \frac{m_{\gamma'}^2}{4} A^{(h)}_{\mu} A^{(h)\,\mu\nu}$$

- Typical type II scenario
 - Open string U(1) from visible gauge sector
 - Extra U(1) from hidden gauge sector, compatible with experiment as massless or very light hidden gauge symmetries
 - Natural scenario: massless hidden U(1) with charged light matter

non-trivial kinetic mixing χ_{vh}

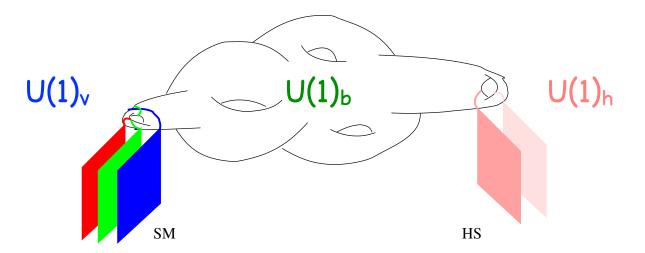
$$\Rightarrow$$
 Milli-charged scenario

Holdom '86

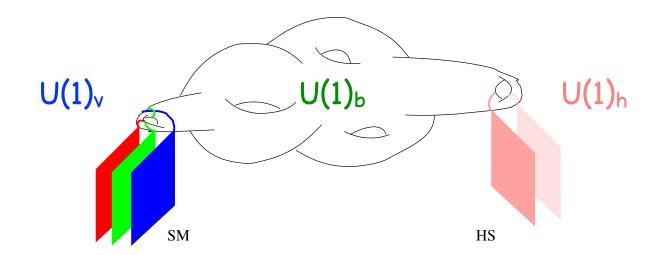
- Typical type II scenario
 - Open string U(1) from visible gauge sector
 - Extra U(1) from hidden gauge sector, compatible with experiment as massless or very light hidden gauge symmetries
 - Natural scenario: massless hidden U(1) with charged light matter

non-trivial kinetic mixing χ_{vh}

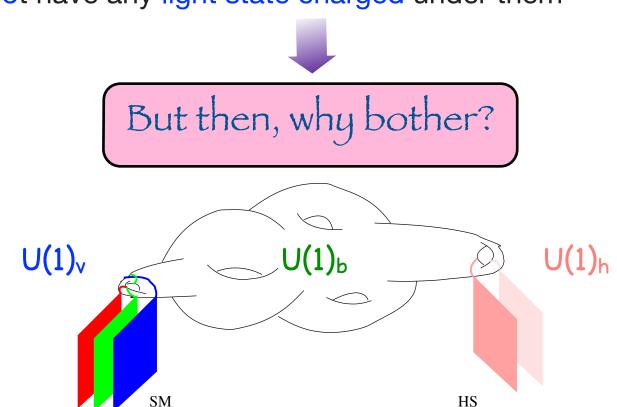
$$\Rightarrow$$
 Milli-charged scenario


Open-open U(1) mixing arises at one loop

Abel², Cicoli, Goodsell⁴, Jaeckel⁴, Khoze², Redondo, Ringwald⁵'06-11 Gmeiner, Honecker³, Ripka, Staessens'09-12 CFT computation Williams, Burgess, Maharana, Quevedo'11 Bullimore, Conlon, Witowski'10


Shiu, Soler, Ye '13

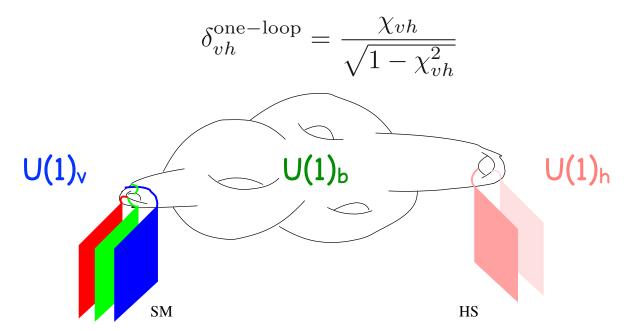
Holdom '86


- Typical type II scenario
 - Open string U(1) from visible gauge sector
 - Extra U(1) from hidden gauge sector, compatible with experiment as massless or very light hidden gauge symmetries
 - Natural scenario: massless hidden U(1) with charged light matter
 - Also natural to consider a massless hidden U(1) arising from the closed string sector of the compactification

- Closed string U(1)'s in type II
 - ← Arise from dimensional reduction of RR potential: $C_p = A_1 \wedge \omega_{p-1}$
 - Mix with open string U(1)'s at tree level
 - Do not have any light state charged under them

- Closed string U(1)'s in type II
 - Arise from dimensional reduction of RR potential: $C_p = A_1 \wedge \omega_{p-1}$
 - Mix with open string U(1)'s at tree level
 - Do not have any light state charged under them

Reason I: Millicharges


• $U(1)_b$ can mix with $U(1)_v$ and $U(1)_h$ at the same time

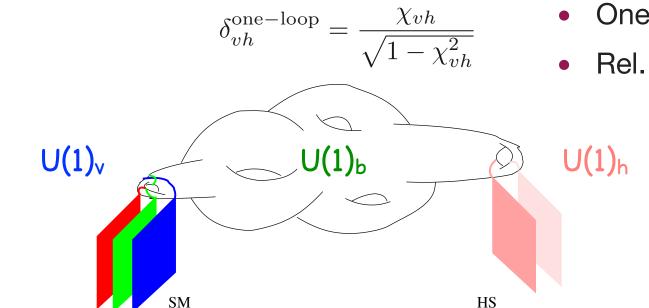
$$\mathcal{L}_{4d} \supset -\frac{1}{4} \sum_{i=v,h,b} F^{(i)}_{\mu\nu} F^{(i)\,\mu\nu} + \frac{1}{2} \left(\chi_{vb} F^{(v)}_{\mu\nu} F^{(b)\,\mu\nu} + \chi_{hb} F^{(h)}_{\mu\nu} F^{(b)\,\mu\nu} \right)$$

 Removing the χ's by a change of basis induces a hypercharge on matter charged under U(1)_h

$$\delta_{vh}^{\text{eff}} = \frac{\chi_{vb}\chi_{hb}}{\sqrt{1 - \chi_{vb}^2 - \chi_{hb}^2}}$$

compared to

Reason I: Millicharges


• $U(1)_b$ can mix with $U(1)_v$ and $U(1)_h$ at the same time

$$\mathcal{L}_{4d} \supset -\frac{1}{4} \sum_{i=v,h,b} F^{(i)}_{\mu\nu} F^{(i)\mu\nu} + \frac{1}{2} \left(\chi_{vb} F^{(v)}_{\mu\nu} F^{(b)\mu\nu} + \chi_{hb} F^{(h)}_{\mu\nu} F^{(b)\mu\nu} \right)$$

 Removing the χ's by a change of basis induces a hypercharge on matter charged under U(1)_h

$$\delta_{vh}^{\text{eff}} = \frac{\chi_{vb}\chi_{hb}}{\sqrt{1 - \chi_{vb}^2 - \chi_{hb}^2}}$$

compared to

- Tree level
- Rel. position indep.
- One-loop
- Rel. position dep.

Reason I: Millicharges

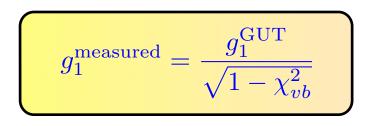
• $U(1)_b$ can mix with $U(1)_v$ and $U(1)_h$ at the same time

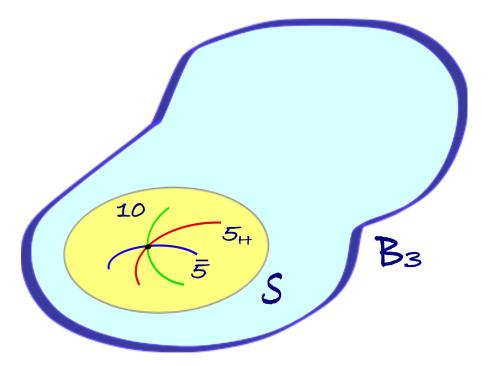
$$\mathcal{L}_{4d} \supset -\frac{1}{4} \sum_{i=v,h,b} F^{(i)}_{\mu\nu} F^{(i)\,\mu\nu} + \frac{1}{2} \left(\chi_{vb} F^{(v)}_{\mu\nu} F^{(b)\,\mu\nu} + \chi_{hb} F^{(h)}_{\mu\nu} F^{(b)\,\mu\nu} \right)$$

 Removing the χ's by a change of basis induces a hypercharge on matter charged under U(1)_h

$$\delta_{vh}^{\text{eff}} = \frac{\chi_{vb}\chi_{hb}}{\sqrt{1 - \chi_{vb}^2 - \chi_{hb}^2}}$$

compared to


$$\delta_{vh}^{\text{one-loop}} = \frac{\chi_{vh}}{\sqrt{1 - \chi_{vh}^2}}$$

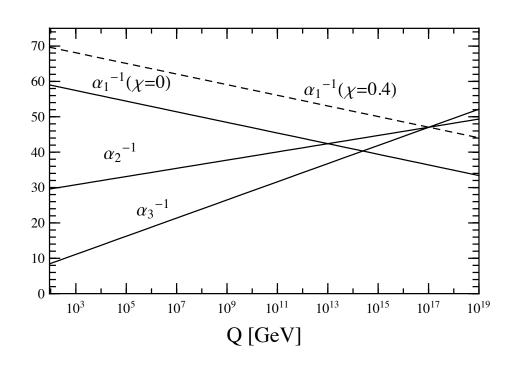

- Tree level
- Rel. position indep.
- One-loop
- Rel. position dep.

Both contributions could be comparable

Reason II: Unification

If U(1)_v = U(1)_Y ⊂ SU(5) or G_{GUT}, then mixing with U(1)_b changes the GUT relations

Reason II: Unification

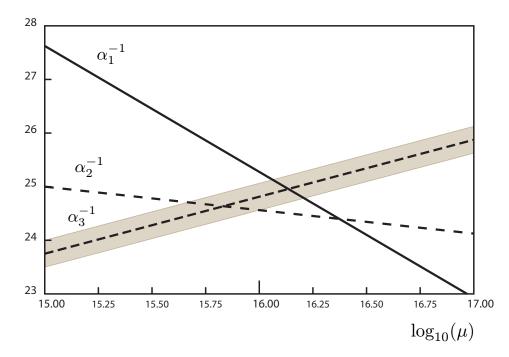

If U(1)_v = U(1)_Y ⊂ SU(5) or G_{GUT}, then mixing with U(1)_b changes the GUT relations

$$g_1^{ ext{measured}} = rac{g_1^{ ext{GUT}}}{\sqrt{1-\chi_{vb}^2}}$$

Redondo '08

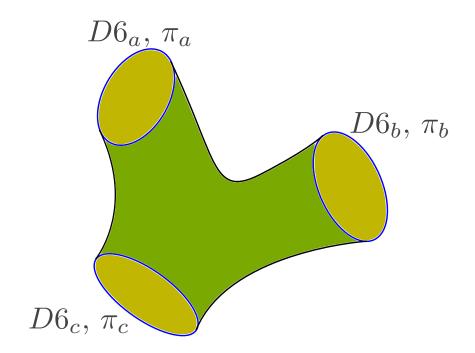
Could explain deviations from unification in SM

Reason II: Unification


If U(1)_v = U(1)_Y ⊂ SU(5) or G_{GUT}, then mixing with U(1)_b changes the GUT relations

$$g_1^{ ext{measured}} = rac{g_1^{ ext{GUT}}}{\sqrt{1-\chi_{vb}^2}}$$

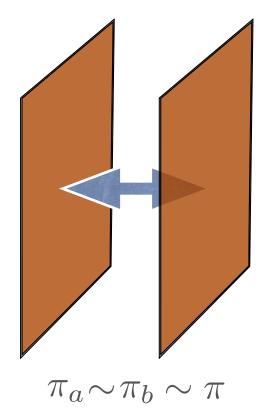
Redondo '08



Gives further corrections to U(1)_Y coupling constant in F-theory GUTs

see also Hebecker's talk

Computing Open-Closed U(1) mixing



Mixing from DBI

 Mixing between open and closed string U(1)'s can already be seen at the level of the DBI action
 Jockers & Louis '04

Grimm & Lopes '11 Kerstan & Weigand '11

Simple setup: separating two D-branes

Cámara, Ibáñez, 7.M. 11

Adjoint Higgsing $\begin{array}{c} & \phi \\ SU(2) \xrightarrow{\phi} U(1) \\ U(1) = \frac{1}{2}[U(1)_a - U(1)_b] \end{array}$

mixing depends on the vev of ϕ and some topological conditions

Mixing from DBI

Type IIA with Higgsed D6-branes

Closed string U(1)'s

$$C_3 = A_1^i \wedge \omega_i \qquad \omega_i \in \mathcal{H}_+^{1,1}$$

D6-brane moduli

Open-closed mixing

$$f_{i(a-b)} = -\frac{i}{4l_s^3} (\Phi_a^j - \Phi_b^j) \int_{\pi} \zeta_j \wedge \omega_i$$

Mixing from DBI

Type IIA with Higgsed D6-branes

Open-closed mixing

$$f_{i(a-b)} = -\frac{i}{4l_s^3} (\Phi_a^j - \Phi_b^j) \int_{\pi} \zeta_j \wedge \omega_i$$

 $\pi_a \sim \pi_b \sim \pi$

Vanishes whenever

$$\Phi_a^j = \Phi_b^j \to SU(2)$$

or

$$\int_{\pi} \omega_i \wedge \zeta_j = \int_{\rho_j} \omega_i = 0 \quad \blacksquare$$

the 2-cycles ρ_j of π are trivial in ambient space

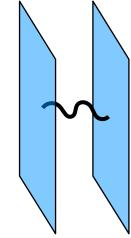
Mixing from the Witten effect

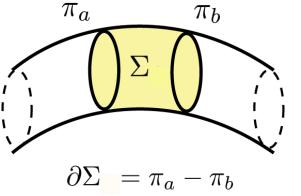
- DBI dim. reduction only sees D-brane moduli dependence, but typically we aim for models without open string moduli
- ✤ More powerful method → use of the Witten effect

Witten '79

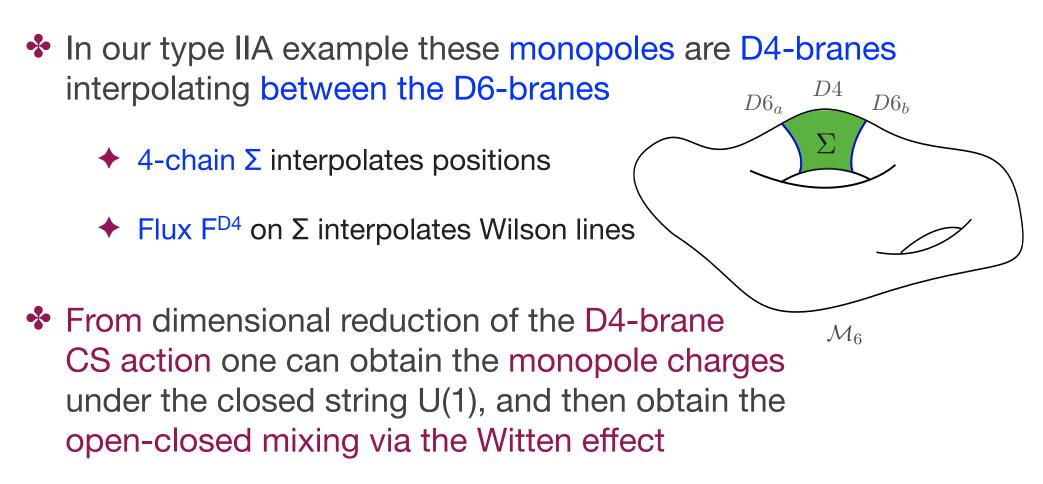
Mixing from the Witten effect

Witten '79


- DBI dim. reduction only sees D-brane moduli dependence, but typically we aim for models without open string moduli
- ✤ More powerful method → use of the Witten effect


Gauge theory that breaks CPMagnetic monopoles
have electric chargeSimplest case: $\theta F \wedge F$ $Q^E = -\frac{\theta}{2\pi}$ Multiple U(I)'s $\begin{cases} Q_I^E = n_I^e - \operatorname{Im} f_{IJ} n_J^m \\ Q_I^M = n_I^m \end{cases}$

$$S_{4d} \supset -\int_{\mathbb{R}^{1,3}} \operatorname{Re} f_{pq} F_p \wedge *F_q + \operatorname{Im} f_{pq} F_p \wedge F_q$$

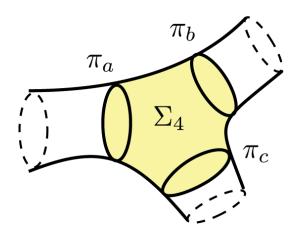

U(1)'s and Monopoles

- Upon adjoint Higgsing SU(2) → U(1) we obtain the following massive states
 N N
 - W-bosons (fund. open string)
 - Magnetic monopoles
 (Dp-brane on p-chain Σ)

Monopoles and Mixing

$$f_{i(a-b)} = \frac{1}{2} \int_{\Sigma} (J - i\mathcal{F}^{D4}) \wedge \omega_i$$

Monopoles and Mixing


This method is general and does not rely on

D6-branes having moduli

U(1) coming from a Higgsed U(1) [homotopic 3-cycles]

- It can be applied to any open string U(1)x
 - Massless condition

$$\pi_X = \sum_{\alpha} n_{X\alpha} \pi_{\alpha} = \partial \Sigma_4 \qquad n_{X\alpha} \in \mathbb{Z}$$

+ Σ_4 is wrapped by the open string monopole

$$f_{iX} = \frac{1}{2} \int_{\Sigma_X} (J - i\mathcal{F}^{D4}) \wedge \omega_i$$

Mixing and M-theory

The expression

$$f_{iX} = \frac{1}{2} \int_{\Sigma_X} (J - i\mathcal{F}^{D4}) \wedge \omega_i$$

matches previous results motivated by M-theory Cámara, Ibáñez, 7.M. 11

We can establish the following dictionary:

U(1)'sMonopolesM-theory $\omega \in \mathcal{H}^{1,1}(\mathcal{M}_7)$ $\Lambda_5 \in H_5(\mathcal{M}_7)$ type IIA $\omega \in \mathcal{H}^{1,1}_+(\mathcal{M}_6)$
 $\pi_X - \pi^*_X = \partial \Sigma_4$ $\pi_4 \in H^-_4(\mathcal{M}_6, \pi_{D6})$ $H^-_4(\mathcal{M}_6)$
 $\{\Sigma_4\}$

Mixing and Linear Equivalence

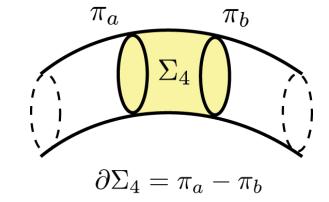
The vanishing kinetic mixing condition

$$\operatorname{Re} f_{i(a-b)} = \frac{1}{2} \int_{\Sigma_4} J \wedge \omega_i = 0$$

$$\pi_a \qquad \pi_b$$

$$\partial \Sigma_4 = \pi_a - \pi_b$$

is similar to asking that the 3-cycles π_a and π_b are linearly equivalent

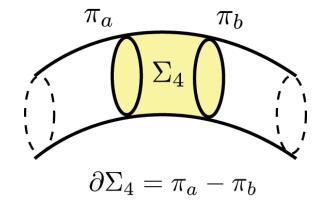

- Linear equivalence: criterion to compare p-cycles in the same homology class [harmonic forms on (p+1)-chains vanish]
 - Typically used for divisors but can be applied to more general cycles wrapped by BPS D-branes
 #itchin '99
 - Allows to write the kinetic mixing as

$$\operatorname{Re} f_{i(a-b)} = \frac{1}{2} \int_{\mathcal{M}_6} J \wedge \omega_i \wedge \overline{\omega}_2 \qquad d\overline{\omega}_2 = \delta_3(\pi_3^a) - \delta_3(\pi_3^b)$$

Recap of type IIA

 Open-closed U(1) mixing is a holomorphic quantity of the 4d effective theory that can be computed via a chain integral

$$f_{iX} = \frac{1}{2} \int_{\Sigma_X} (J - i\mathcal{F}^{D4}) \wedge \omega_i$$

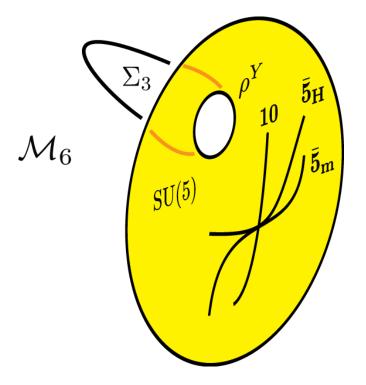


- The physical meaning of this chain is the internal worldvolume of the open string U(1) monopole
- The mathematical meaning is the measurement of linear equivalence between submanifolds, or generalised version that include D-brane Wilson lines

Recap of type IIA

 Open-closed U(1) mixing is a holomorphic quantity of the 4d effective theory that can be computed via a chain integral

$$f_{iX} = \frac{1}{2} \int_{\Sigma_X} (J - i\mathcal{F}^{D4}) \wedge \omega_i$$


Another holomorphic quantity computed via a chain integral is the D6-brane superpotential

Martucci '06

$$W_{\rm D6} \sim \int_{\mathcal{M}_6} (J - i\mathcal{F})^2$$

both quantities related in N=2 (unorientifolded CY geometry)

Mixing in type IIB and F-theory GUTs

Mixing in type IIB

Type IIB with Higgsed D7-branes

Closed string U(1)'s

$$C_4 = A_1^i \wedge \operatorname{Re} \gamma_i \qquad \gamma_i \in \mathcal{H}^{2,1}_+$$

- Two D7-branes in the same homology class of a CY are always linearly equivalent to each other [no harmonic 5-form]
- However, magnetised D7-branes carry charge of D5-brane, for which linear equivalence is non-trivial
- Open-closed mixing from DBI analysis with moduli

 S_4'

 $\Phi = \delta S_4$

$$f_{i(a-b)} = -\frac{i}{4}(a_a^j - a_b^j) \int_S A_j \wedge \gamma_i - \frac{i}{4}(\Phi_a^m - \Phi_b^m) \int_S \iota_{X_m} \gamma_i \wedge F_2$$

Mixing in type IIB

 S_4'

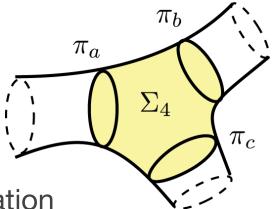
 $\Phi = \delta S_4$

Type IIB with Higgsed D7-branes

Closed string U(1)'s

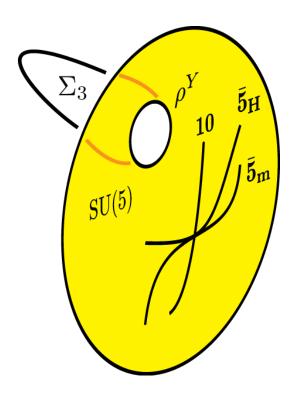
$$C_4 = A_1^i \wedge \operatorname{Re} \gamma_i \qquad \gamma_i \in \mathcal{H}^{2,1}_+$$

- Two D7-branes in the same homology class of a CY are always linearly equivalent to each other [no harmonic 5-form]
- However, magnetised D7-branes carry charge of D5-brane, for which linear equivalence is non-trivial
- Open-closed mixing from Witten effect [D5-brane monopole]


$$f_{i(a-b)} = -\frac{i}{2} \int_{\Gamma} \gamma_i \wedge \tilde{\mathcal{F}}$$

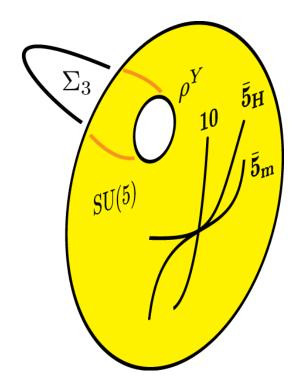
Mixing in type IIB

General case


- Fluxes contribute to the Stückelberg mass.
 Massless open string U(1) for a linear combination such that all induced D-brane charges also vanish
- Appropriate framework: generalised homology Monopoles are described by D-brane networks on generalised chains
 Euslin and Martucci ' 07
- Mixing can still be extracted from the Witten effect on these open string magnetic monopoles

$$f_{iX} = -\frac{i}{2} j_{(\mathfrak{S},\mathfrak{F})_X}(\gamma_i),$$

- Consider F-theory SU(5) with hypercharge breaking
 - Flux F_Y is non-trivial in H²(S) but trivial in ambient space


Buican et al.' 06 Donagui & Winhkolt '08 Beasley et al.'08

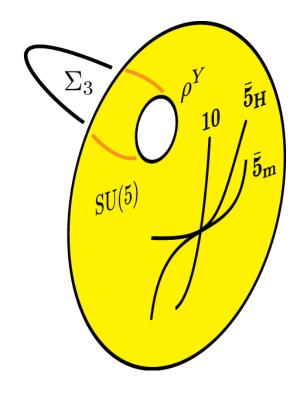
- Consider F-theory SU(5) with hypercharge breaking
 - Flux F_Y is non-trivial in H²(S)
 but trivial in ambient space

Buican et al. '06 Donagui & Winhkolt '08 Beasley et al. '08

 Monopole is subtle: genuine D-brane network in a generalised chain

$$D7_a$$

$$(S_a, F_a)$$

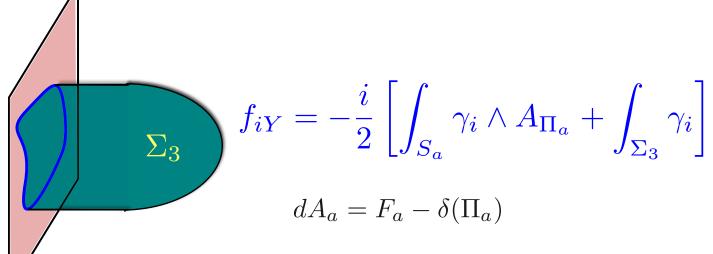

- Consider F-theory SU(5) with hypercharge breaking
 - Flux F_Y is non-trivial in H²(S) but trivial in ambient space

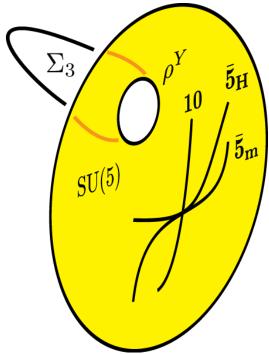
Buican et al. '06 Donagui & Winhkolt '08 Beasley et al. '08

 Monopole is subtle: genuine D-brane network in a generalised chain

$$f_{iY} = -\frac{i}{2} \int_{S_a} \gamma_i \wedge A_{\Pi_a}$$

$$dA_a = F_a - \delta(\Pi_a)$$




 $D7_a + D5_a$

- Consider F-theory SU(5) with hypercharge breaking
 - Flux F_Y is non-trivial in H²(S)
 but trivial in ambient space

Buican et al. '06 Donagui & Winhkolt '08 Beasley et al. '08

 Monopole is subtle: genuine D-brane network in a generalised chain

Conclusions

- Open-closed U(1) kinetic mixing is phenomenologically relevant as a source of millicharged particles and inducing corrections to gauge coupling unification
- In general it can be computed via a chain integral. Physical meaning: U(1) magnetic monopoles and Witten effect
- Mathematical meaning: linear equivalence of submanifolds and generalised version for D-branes (generalised geometry)
- Particularly interesting case: F-theory GUT hypercharge mixing with bulk U(1)'s. Monopole is subtle and so is the expression for the mixing

The String Theory Universe 20th European Workshop on String Theory 2nd COST MP1210 Meeting

22–26 September 2014 Philosophicum, JGU Mainz

www.strings2014.uni-mainz.de

The conference is dedicated to all aspects of superstring, supergravity and supersymmetric theories and is embedded in the MITP programme String Theory and its Applications.

Organizers

Johanna Erdmenger | Munich Mirjam Cvetič | Philadelphia Fernando Marchesano | Madrid Carlos Núñez | Swansea Timo Weigand | Heidelberg

Local Organizer Gabriele Honecker | Mainz

International Advisory Committee

Ana Achúcarro | Leiden Matthias Blau | Bern Jan de Boer | Amsterdam Anna Ceresole | Torino Roberto Emparan | Barcelona Jerome Gauntlett | London Elias Kiritsis | Heraklion Charlotte Kristjansen | Copenhagen María A. Lledó | Valencia Yolanda Lozano | Oviedo Dieter Lüst | Munich Silvia Penati | Milano Antoine Van Proeyen | Leuven

Mainz Institute for Theoretical Physics

Overview Talks

Paul Chesler | Harvard Fernando Marchesano | Madrid Dario Martelli | London Tadashi Takayanagi | Kyoto Ivonne Zavala | Groningen

Special Interest Talks

Lutz Köpke | Mainz IceCube Neutrino Observatory

Ana Achúcarro | Leiden Strings and the Cosmic Microwave Background

MITP Public Lecture

Dieter Lüst | Munich Strings im Multiversum Mainzer Wissenschaftsmarkt Saturday, 13 September 2014 at 6pm.

Working Groups

Gauge/Gravity Duality String Phenomenology Cosmology and Quantum Gravity