Discrete Gauge Symmetries, Chern Simons terms and Axion Monodromy

Angel M. Uranga IFT-UAM/CSIC, Madrid

F. Marchesano, G. Shiu, A.U. arXiV:1405.7044 c.f. Shiu's talk Retolaza's parallel session talk

String Pheno 2014, Trieste

Plan

Ş

Discrete gauge symmetries, Zn particles and strings

String theory realizations

Torsion homology Flux compactifications

- Gauge symmetries from 3- and 2-forms Axion monodromy
- String theory realizations
 Torsion homology
 Flux compactifications

Z_n discrete gauge symmetries

Gan realize Z_n as U(1) Higgssed by field of charge n 4d Lagrangian for gauge field and phase ϕ of scalar field

$$|F_2|^2 + |d\phi - nA_1|^2$$

Gauge transformation

$$A_1 \to A_1 + d\lambda \quad ; \quad \phi \to \phi + \eta$$

Can be dualized to 4d BF theory $|H_3|^2 + nB_2 \wedge F_2 + |F_2|^2$

Banks, Seiberg

Zn symmetry read from coefficient of BF coupling

Dualizing also gauge field to dual gauge potential, we get

$$|H_3|^2 + |dV_1 - nB_2|^2$$

Gauge transformation

$$B_2 \to B_2 + d\Lambda_1 \quad ; \quad V_1 \to V_1 + n\Lambda_1$$

Charged objects

- Relevant 4d fields: ϕ, A_1, B_2, V_1
- Particles and strings (Zn annihilation on instantons and junctions)
 - Strings defined by holonomy given by scalar field shift (and coupling to dual 2-form B₂)
 - Particles defined by integral of F_2 on surrounding S^2 (and coupling to A₁)

Can generalize to arbitrary p-forms in arbitrary dimensions Berasaluce-González, Ramírez, AU; also Quevedo, Trugenberger

Many (interrelated) stringy realizations

Torsion homology

Cámara, Ibáñez, Marchesano; Berasaluce-González, Cámara, Marchesano, Regalado, A.U.

BF couplings on D-branes Rparity, Btriality in MSSM models

Berasaluce-González, Ibáñez, Soler, A.U

Discrete isometries & magnetized D-branes

Non-abelian selection rules on Yukawas Berasaluce-González, Cámara, Marchesano, Regalado, A.U.

Flux compactifications

Supercritical strings

Berasaluce-González, Cámara, Marchesano, A.U.

Berasaluce-González, Montero, Retolaza, A.U.

c.f. Montero's parallel session talk

Many (interrelated) stringy realizations

Zn symmetries from torsion p-forms

Compactifications of p-forms on spaces with torsion homology

Ex: M-theory on 7d space (e.g. G2) X with H₂(X,Z)=H₄(X,Z)=Zn

M2's on 2-cycles are Zk particles instantons are M2 on 3-chains, emit torsion M2's M5's on 4-cycles are Zk strings junctions are M5 on 5-chains, emit torsion M5's

Gauging manifest using non-harmonic forms (massive U(1)) Ex: $d\eta_2 = n \omega_3$ KK reduction $C_3 = A_1(x^{\mu}) \wedge \eta_2(y^m) + \phi(x^{\mu}) \omega_3(y^m)$ $G_4 = (d\phi - n A_1) \wedge \eta_2 + \dots$

Zn symmetries from torsion p-forms

Compactifications of p-forms on spaces with torsion homology

Ex: M-theory on 7d space (e.g. G2) X with H₂(X,Z)=H₄(X,Z)=Zn

M2's on 2-cycles are Zk particles instantons are M2 on 3-chains, emit torsion M2's M5's on 4-cycles are Zk strings junctions are M5 on 5-chains, emit torsion M5's

- M-theory lift of Zn symmetries from D6-brane U(1)'s
- Can get non-abelian symmetries
- For later, useful to think about torsion as a 'geometric flux' (as in twisted tori)

D-branes Z-valued in homology but Zn-valued in K-theory

D-branes can decay in the presence of NSNS 3-form flux (""Freed-Witten anomaly"")

Maldacena, Moore, Seiberg

General branes and fluxes (beyond Ktheory)

Berasaluce-González, Cámara, Marchesano, AU

Discrete gauge symmetries from flux cathalysis

4d BF coupling from 10d Chern-Simons term

D-branes Z-valued in homology but Zn-valued in K-theory

D-branes can decay in the presence of NSNS 3-form flux (""Freed-Witten anomaly"")

Maldacena, Moore, Seiberg

General branes and fluxes (beyond Ktheory) Berasaluce-González, Cámara, Marchesano, AU Discrete gauge symmetries from flux cathalysis 4d BF coupling from 10d Chern-Simons term Ex: IIA Freund-Rubin $\int_{Ad\times X_{2}}\overline{F}_{6} \wedge B_{2} \wedge F_{2} \rightarrow \int_{Ad} n B_{2} \wedge F_{2}$

Zn particles are D0s, annihilate on NS5 on X6 Zn strings are F1s, annihilate on D6 on X6

D-branes Z-valued in homology but Zn-valued in K-theory

D-branes can decay in the presence of NSNS 3-form flux (""Freed-Witten anomaly"")

Maldacena, Moore, Seiberg

General branes and fluxes (beyond Ktheory)

Berasaluce-González, Cámara, Marchesano, AU

Discrete gauge symmetries from flux cathalysis

4d BF coupling from 10d Chern-Simons term

D-branes Z-valued in homology but Zn-valued in K-theory

D-branes can decay in the presence of NSNS 3-form flux (""Freed-Witten anomaly"")

Maldacena, Moore, Seiberg

General branes and fluxes (beyond Ktheory) Berasaluce-González, Cámara, Marchesano, AU Discrete gauge symmetries from flux cathalysis 4d BF coupling from 10d Chern-Simons term Ex: IIB with NSNS flux on A-cycle $\int_{Ad\times X_2} \overline{H}_3 \wedge C_2 \wedge F_5 \rightarrow \int_{Ad} n C_2 \wedge F_2$

Zn particles are D3s on B-cycle, annihilate on D5 on X6 Zn strings are D1s, annihilate on D3 on A-cycle

Zn domain walls and gauge symmetries Berasaluce-González, Cámara, Marchesano, AU Shiu, Marchesano, AU Can consider other Zn charged objects in 4d Lagrangian for 3-form eating up a 2-form Dvali et al Quevedo, Trugenberger $|F_4|^2 + |dC_2 - nC_3|^2$ Gauge transformation $C_3 \rightarrow C_3 + d\Lambda_2$; $C_2 \rightarrow C_2 + n\Lambda_2$ Can be dualized to Φ F4 theory Kaloper,Sorbo, $|F_4|^2 + n \phi F_4 + |d\phi|^2$ Lawrence Dualizing also 3-form (to "(-1)form"), we get $|d\phi|^2 + \phi^2$ Chaotic inflation model No gauge invariance manifest in axion language

Corrections constrained to powers of F4 due to dual gauge inv.

Many (interrelated) stringy realizations

Backreaction, transitions by DW nucleation, computableOBS: 4d instanton leads to cosine modulation, not to jump across branches

"Massive Wilson lines" (torsion p-forms)

Compactifications of I-forms on cycles with torsion I-homology

 $\stackrel{\scriptstyle{\bigvee}}{=}$ Ex: D6 on 3cycle space Π with H₁(Π ,Z)=Zn

axion Φ is gauge field on torsion I-cycle (massive)
4d domain wall is monopole (D4 ending on D6) wrapped on I-cycle
4d string is monopole (D4 ending on D6) wrapped on 2-chain
4d instanton (cosine modulation) is FI worldsheet on 2-chain

3- and 2-form from dual gauge potential and non-harmonic forms

Ex:
$$d\eta_1 = n\,\omega_2$$

KK reduction $A_4 = C_3(x^{\mu}) \wedge \eta_1(y^m) + C_2(x^{\mu}) \wedge \omega_2(y^m)$ $F_5 = (dC_2 - nC_3) \wedge \omega_2 + \dots$

In axion language

WL Φ not a modulus: $A_1 = \phi \eta_1$ $F_2 = \phi n \omega_2$ F2 kinetic terms implies quadratic growth of energy with Φ

"Massive Wilson lines" (torsion p-forms)

Compactifications of I-forms on cycles with torsion I-homology

- Ex: D6 on 3cycle space Π with H₁(Π ,Z)=Zn
- 🎽 In geometric terms

WL Φ not a modulus, turns on F2 flux on 2-chain of torsion 1-cycle

F2 kinetic terms implies quadratic growth of energy with $\boldsymbol{\Phi}$

UV completion allows discussing backreaction For large F2, change Maxwell to DBI: potential becomes linear

Fluxed axion monodromy

 $\frac{1}{2}$ Use 10d Chern-Simons terms to get 4d Φ F4 term, equiv use flux cathalisis to get Zn domain walls

Ex: IIB with NSNS flux on A-cycle

$$F_4 = \int_B F_7 \quad ; \quad \int_A H_3 = n$$
$$\int_{4d \times X_6} \overline{H}_3 C_0 F_7 \to \int_{4d} n C_0 F_4$$

I Od IIB axion has a monodromy. Origin of energetic cost? GVW supo $W = \int_{X_6} (F_3 - \tau \overline{H}_3) \wedge \Omega$

Period of C0 changes n units of F3 flux on A 4d Domain Wall is D5 on B (also from origin of F4) 4d instanton is D(-1) (cosine modulation)

UV completion, backreaction:

10 periods require O(10) units of flux. Expect GVW remain good approx.

Conclusions

- Discrete gauge symmetries everywhere
- Zn charged particles and strings

Pretty well explored, motivate study of topological couplings in setups like torsion, fluxes, ...

Zn charged domain walls

'Exotic' gauge symmetries (3- and 2-forms)

Monodromic axions, with controlled potential

String constructions UV complete 4d Kaloper-Sorbo

Applications to inflation

⇒Gary Shiu's talk

Topological structure of monodromy in axion field space Natural interplay with flux moduli stabilization Need mechanisms for scales e.g. warping. A. Retolaza's talk

FINE-TUNING, ANTHROPICS AND THE STRING LANDSCAPE

©2009-2014 cooperscooper

Instituto de Física Teórica UAM-CSIC Madrid, 8-10 October 2014 http://workshops.ift.uam-csic.es/ws/anthropic

SPEAKERS:

T. BANKS (SANTA CRUZ & RUTGERS U.) I. BENA (CEA SACLAY) J.J. BLANCO-PILLADO (UPV) R. BOUSSO (BERKELEY U.) A.R. BROWN (STANFORD U.) U. DANIELSSON (UPPSALA U.) F. DENEF (COLUMBIA U.) J.F. DONOGHUE (MASSACHUSETTS U.) B. FREIVOGEL (AMSTERDAM U.) B. GREENE* (COLUMBIA U.) A.H. GUTH (MIT) L.J. HALL (BERKELEY U.) C.J. HOGAN (CHICAGO U. & FERMILAB) M. KLEBAN (NEW YORK U.)

у осно

EXCELENCIA

- U. MEISSNER (BONN U.)
- L. MCALLISTER (CORNELL U.)
- F. QUEVEDO (ICTP)
- L. RANDALL (HARVARD U.)
- S. SETHI (CHICAGO U.)
- A. VILENKIN (TUFTS U.)
- A. WESTPHAL (DESY)
- . TO BE CONFIRMED

ORGANIZERS:

J. GARRIGA L.E. IBAÑEZ F. MARCHESANO A.N. SCHELLEKENS A.M. URANGA

anthropic@uam.es

European Research Council SPLE Advanced Grant

Thank you!