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Dust is not entirely settled …

[Mortonson & Seljak]

[Flauger, Hill & Spergel]

B-modes:



Possible “Tension” with PLANCK 



BICEP2 and Inflation

If the BICEP2 results are confirmed to be primordial, natural 
interpretations:


✦ Inflation took place


✦ The energy scale of inflation is the GUT scale


✦ The inflaton field excursion was super-Planckian


✦ Great news for string theory due to strong UV sensitivity!
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Assumptions in the Lyth Bound

single field

vacuum fluctuations Particle production during inflation 
can be a source of GWs

slow-roll

Only known model of particle production that:

Detectable tensors w/o too large non-Gaussianity

Chiral, non-Gaussian tensor spectrum

Can accommodate a blue tensor tilt


due to an axionic a F∧ F coupling
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✤ A poster child inflation model (also seems favored) is V = m2φ2:


✦ Coupling to UV degrees of freedom in quantum gravity a 
priori breaks this shift symmetry and lead to corrections that 
spoil inflation, because of the large field excursions

Chaotic Inflation Linde ’86

✦ Loop corrections 
involving inflaton and 
gravitons are small due 
to approximate shift 
symmetry
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Chaotic Inflation Linde ’86
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✤ String models where the inflaton is an axion in principle can 
avoid this problem


Natural Inflation Freese, Frieman, Olinto ’90

2⇡f�

✦ Shift symmetry broken 
by non-perturbative 
effects+UV completion, 
but periodicity is exact

✦ In string theory axions 
generically come from 
p-forms, so above the 
KK scale the shift 
symmetry becomes a 
gauge symmetry � =

Z

⇡p

Cp
Fp+1 = dCp

Cp ! Cp + d⇤p�1

Dimopoulos et al.’ 05



✤ String models where the inflaton is an axion in principle can 
avoid this problem


Natural Inflation Freese, Frieman, Olinto ’90

2⇡f�

✦ Shift symmetry broken 
by non-perturbative 
effects+UV completion, 
but periodicity is exact

✦ In string theory axions 
generically come from 
p-forms, so above the 
KK scale the shift 
symmetry becomes a 
gauge symmetry 

✦ However, these axions 
have sub-Planckian 
decay constants

Banks et al.’03     Svrcek & Witten ‘06

� =

Z

⇡p

Cp
Fp+1 = dCp

Cp ! Cp + d⇤p�1
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Axion Monodromy Inflation

Combine chaotic inflation and 
natural inflationIdea:

The axion periodicity is lifted, allowing for super-Planckian 
displacements. The UV corrections to the potential should 
still be constrained by the underlying symmetry.

Siverstein & Westphal ’08
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displacements. The UV corrections to the potential should 
still be constrained by the underlying symmetry
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Figure 2: Schematic of tadpole cancellation. Blue: Two-real-parameter family of two-

cycles ⌃
1

, drawn as spheres, extending into warped regions of the Calabi-Yau. Red: We have

placed a fivebrane in a local minimum of the warp factor, and an anti-fivebrane at a distant

local minimum of the warp factor. In the lower figure, ⌃
1

is drawn as the cycle threaded by

C(2), and global tadpole cancellation is manifest.

Moduli stabilization is essential for any realization of inflation in string theory, and we

must check its compatibility with inflation in each class of examples. In type IIB compactifi-

cations on Calabi-Yau threefolds, inclusion of generic three-form fluxes stabilizes the complex

structure moduli and dilaton [19]. A subset of these three-form fluxes – imaginary self-dual

fluxes – respect a no scale structure [19, 18]. This su�ces to cancel the otherwise dangerous

flux couplings described in §3.2.1.

4.2 An Eta Problem for B

In this class of compactifications, however, the stabilization of the Kähler moduli leads to an

⌘ problem in the b direction. This problem arises because the nonperturbative e↵ects (e.g.
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Early developments:
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Combine chaotic inflation and 
natural inflation

see Westphal’s talk
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✦ McAllister, Silverstein, Westphal → String scenarios


✦ Kaloper, Lawrence, Sorbo → 4d framework
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✦ McAllister, Silverstein, Westphal → String scenarios


✦ Kaloper, Lawrence, Sorbo → 4d framework


exceedingly complicated, uncontrollable ingredients, backreaction, …
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✦ McAllister, Silverstein, Westphal → String scenarios


✦ Kaloper, Lawrence, Sorbo → 4d framework


exceedingly complicated, uncontrollable ingredients, backreaction, …

UV completion?

See also talks of Nilles, Hebecker, Witowski, 
Uranga,Retolaza, Valenzuela, and references therein.
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✦ Done in string theory within the moduli stabilization 
program: adding ingredients like background fluxes 
generate superpotentials in the effective 4d theory

F-term Axion Monodromy Inflation

Obs: Axion Monodromy
Giving a mass to an 

axion~

figure taken from Ibañez & Uranga ‘12
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✦ Done in string theory within the moduli stabilization 
program: adding ingredients like background fluxes 
generate superpotentials in the effective 4d theory

F-term Axion Monodromy Inflation

Obs: Axion Monodromy
Giving a mass to an 

axion~

Use same techniques to 
generate an inflation potentialIdea:

• Simpler models, all sectors understood at weak coupling


• Spontaneous SUSY breaking, no need for brane-anti-brane


• Clear endpoint of inflation, allows to address reheating



Toy Example: Massive Wilson line
✤ Simple example of axion: (4+d)-dimensional gauge field 

integrated over a circle in a compact space Πd 


✦ φ massless if ∆η1 = 0 ⇒ S1 is a non-trivial circle in Πd     
exact periodicity and (pert.) shift symmetry


✦  φ massive if ∆η1 = -μ2 η1 ⇒ kS1 homologically trivial in Πd 
(non-trivial fibration)

� =

Z

S1

A1 or A1 = �(x) ⌘1(y)



Toy Example: Massive Wilson line
✤ Simple example of axion: (4+d)-dimensional gauge field 

integrated over a circle in a compact space Πd 


✦ φ massless if ∆η1 = 0 ⇒ S1 is a non-trivial circle in Πd     
exact periodicity and (pert.) shift symmetry


✦  φ massive if ∆η1 = -μ2 η1 ⇒ kS1 homologically trivial in Πd 
(non-trivial fibration)

� =

Z

S1

A1 or A1 = �(x) ⌘1(y)

F2 = dA1 = � d⌘1 ⇠ µ�!2 ⇒  shifts in φ increase energy

     via the induced flux F2

⇒ periodicity is broken and shift symmetry approximate



MWL and twisted tori
✤ Simple way to construct massive Wilson lines: consider 

compact extra dimensions Πd with circles fibered over a base, 
like the twisted tori that appear in flux compactifications 


✤ There are circles that are not contractible but do not 
correspond to any harmonic 1-form. Instead, they correspond 
to torsional elements in homology and cohomology groups


TorH1(⇧d,Z) = TorH2
(⇧d,Z) = Zk



MWL and twisted tori
✤ Simple way to construct massive Wilson lines: consider 

compact extra dimensions Πd with circles fibered over a base, 
like the twisted tori that appear in flux compactifications 


✤ There are circles that are not contractible but do not 
correspond to any harmonic 1-form. Instead, they correspond 
to torsional elements in homology and cohomology groups


✤ Simplest example: twisted 3-torus 

TorH1(⇧d,Z) = TorH2
(⇧d,Z) = Zk

H1(T̃3,Z) = Z⇥ Z⇥ Zk

two normal

 1-cycles

one torsional 

1-cycle

d⌘1 = kdx

2 ^ dx

3
F = � k dx

2 ^ dx

3

µ =
kR1

R2R3

  under a shift φ → φ +1  
F2 increases by k units

T̃3



MWL and monodromy
V (�) ⇠ |F |2

Fk 2k 3k 4k 5k

How does monodromy and 
approximate shift symmetry help 

prevent wild UV corrections?
Question:



Torsion and gauge invariance
✤ Twisted tori torsional invariants are not just a fancy way of 

detecting non-harmonic forms, but are related to a hidden 
gauge invariance of these axion-monodromy models


✤ Let us again consider a 7d gauge theory on M1,3 x 


✦ Instead of A1 we consider its magnetic dual V4 

dV4 = dC3 ^ ⌘1 + (db2 � kC3) ^ �2V4 = C3 ^ ⌘1 + b2 ^ �2

d⌘1 = k �2

T̃3



Torsion and gauge invariance
✤ Twisted tori torsional invariants are not just a fancy way of 

detecting non-harmonic forms, but are related to a hidden 
gauge invariance of these axion-monodromy models


✤ Let us again consider a 7d gauge theory on M1,3 x 


✦ Instead of A1 we consider its magnetic dual V4 


✦ From dimensional reduction of the kinetic term:


• Gauge invariance 


• Generalization of the Stückelberg Lagrangian 

dV4 = dC3 ^ ⌘1 + (db2 � kC3) ^ �2V4 = C3 ^ ⌘1 + b2 ^ �2

d⌘1 = k �2

T̃3

Z
d

7
x |dV4|2

Z
d

4
x |dC3|2 +

µ

2

k

2
|db2 � kC3|2

C3 ! C3 + d⇤2 b2 ! b2 + k⇤2

Quevedo & Trugenberger ’96



Effective 4d theory
✤ The effective 4d Lagrangian


describes a massive axion, has been applied to                       
QCD axion ⇒ generalized to arbitrary V(φ)


✤ Reproduces the axion-four-form Lagrangian proposed by 
Kaloper and Sorbo as 4d model of axion-monodromy inflation 
with mild UV corrections


✤ It is related to an F-term generated mass term  

Kallosh et al.’95 
Dvali, Jackiw, Pi ’05 

Dvali, Folkerts, Franca ‘13

Kaloper & Sorbo ‘08

Groh, Louis, Sommerfeld ’12

F4 = dC3

d� = ⇤4db2

Z
d

4
x |F4|2 + |d�|2 + �F4

Z
d

4
x |dC3|2 +

µ

2

k

2
|db2 � kC3|2



Effective 4d theory
✤ Effective 4d Lagrangian


✤ Gauge symmetry ⇒ UV corrections only depend on F4


F4 = dC3

d� = ⇤4db2

Z
d

4
x |dC3|2 +

µ

2

k

2
|db2 � kC3|2
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⇒ suppressed corrections up to the scale where V(φ) ~ Λ4

⇒ effective scale for corrections Λ → Λeff  = Λ2/μ



Effective 4d theory
✤ Effective 4d Lagrangian


✤ Gauge symmetry ⇒ UV corrections only depend on F4


F4 = dC3

d� = ⇤4db2

Z
d

4
x |dC3|2 +

µ

2

k

2
|db2 � kC3|2

⇤ ! ⇤e↵ = ⇤

✓
⇤

µ
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✤ The integer k in the Lagrangian


corresponds to a discrete symmetry of the theory broken 
spontaneously once a choice of four-form flux is made.     
This amounts to choose a branch of the scalar potential

Discrete symmetries and domain walls

Z
d

4
x |F4|2 +

µ

2

k

2
|db2 � kC3|2

figure taken from Kaloper & Lawrence ‘142⇡f�

k=4



✤ The integer k in the Lagrangian


corresponds to a discrete symmetry of the theory broken 
spontaneously once a choice of four-form flux is made.     
This amounts to choose a branch of the scalar potential


✤ Branch jumps are made via nucleation of domain walls that 
couple to C3, and this puts a maximum to the inflaton range


✤ Domain walls analysed in string constructions [Uranga’s talk]:


• They correspond to discrete symmetries of the superpotential/
landscape of vacua, and appear whenever axions are stabilised


• k domain walls decay in a cosmic string implementing φ → φ+1

Discrete symmetries and domain walls

Z
d

4
x |F4|2 +

µ

2

k

2
|db2 � kC3|2

Berasaluce-Gonzalez, Camara, Marchesano, Uranga ’12



Massive Wilson lines in string theory
✤ Simple example of MWL in string theory: D6-brane on M1,3 x


✤ An inflaton vev induces a non-trivial flux F2 proportional to φ 
but now this flux enters the DBI action 


p
det (G+ 2⇡↵0F2) = dvolM1,3

�
|F2|2 + corrections

�

T̃3



Massive Wilson lines in string theory
✤ Simple example of MWL in string theory: D6-brane on M1,3 x


✤ An inflaton vev induces a non-trivial flux F2 proportional to φ 
but now this flux enters the DBI action 


✤ For small values of φ we recover chaotic inflation, but for 
large values the corrections are important and we have a 
potential of the form


Similar to the D4-brane model of Silverstein and Westphal 
except for the inflation endpoint

T̃3

p
det (G+ 2⇡↵0F2) = dvolM1,3

�
|F2|2 + corrections
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V =
p

L4 + h�i2 � L2



Massive Wilson lines in string theory
✤ Simple example of MWL in string theory: D6-brane on M1,3 x


✤ An inflaton vev induces a non-trivial flux F2 proportional to φ 
but now this flux enters the DBI action 


✤ For small values of φ we recover chaotic inflation, but for 
large values the corrections are important and we have a 
potential of the form


Similar to the D4-brane model of Silverstein and Westphal 
except for the inflation endpoint

T̃3

p
det (G+ 2⇡↵0F2) = dvolM1,3

�
|F2|2 + corrections

�

V =
p

L4 + h�i2 � L2



Massive Wilson lines and flattening
✤ The DBI modification


can be interpreted as corrections due to UV completion


✤ E.g., integrating out moduli such that H < mmod < MGUT         
will correct the potential, although not destabilise it 


✤ In the DBI case the potential is flattened: argued general effect 
due to couplings to heavy fields 


✤ Large vev flattening also observed in examples of confining 
gauge theories whose gravity dual is known [Witten’98]

h�i2 !
p
L4 + h�i2 � L2

Dong, Horn, Silverstein, Westphal ‘10

Kaloper, Lawrence, Sorbo ‘11

Dubovsky, Lawrence, Roberts ’11



Other string examples
✤ We can integrate a bulk p-form potential Cp over a p-cycle to 

get an axion


✤ If the p-cycle is torsional we will get the same effective action


Fp+1 = dCp, Cp ! Cp + d⇤p�1 c =

Z

⇡p

Cp

Z
d

4
x |dC3|2 +

µ

2

k

2
|db2 � kC3|2

Z
d

10
x|F9�p|2



Other string examples
✤ We can integrate a bulk p-form potential Cp over a p-cycle to 

get an axion


✤ If the p-cycle is torsional we will get the same effective action


✤ The topological groups that detect this possibility are


one should make sure that the corresponding axion mass is 
well below the compactification scale (e.g., using warping)

Fp+1 = dCp, Cp ! Cp + d⇤p�1 c =

Z

⇡p

Cp

Z
d

4
x |dC3|2 +

µ

2

k

2
|db2 � kC3|2

Z
d

10
x|F9�p|2

TorHp(X6,Z) = TorHp+1
(X6,Z) = TorH6�p

(X6,Z) = TorH5�p(X6,Z)

Franco, Galloni, Retolaza, Uranga ’14



Other string examples
✤ Axions also obtain a mass with background fluxes


✤ Simplest example: φ = C0 in the presence of NSNS flux H3 


✤ We also recover the axion-four-form potential


W =

Z

X6

(F3 � ⌧H3) ^ ⌦ ⌧ = C0 + i/gs

Z

M1,3⇥X6

C0H3 ^ F7 =

Z

M1,3

C0F4 F4 =

Z

PD[H3]
F7



Other string examples
✤ Axions also obtain a mass with background fluxes


✤ Simplest example: φ = C0 in the presence of NSNS flux H3 


✤ We also recover the axion-four-form potential


✤ M-theory version:


✤ A rich set of superpotentials obtained with type IIA fluxes


✤ Massive axions detected by torsion groups in K-theory

W =

Z

X6

(F3 � ⌧H3) ^ ⌦ ⌧ = C0 + i/gs

Z

M1,3⇥X6

C0H3 ^ F7 =

Z

M1,3

C0F4 F4 =

Z

PD[H3]
F7

Z

X6

eJc ^ (F0 + F2 + F4) Jc = J + iB

Beasley, Witten ’02

potentials higher than quadratic



✤ Axion monodromy is an elegant idea that combines chaotic 
and natural inflation, aiming to prevent disastrous UV 
corrections to the inflaton potential.


✤ We have discussed its concrete implementation in a new 
framework, dubbed F-term axion monodromy inflation 
compatible with spontaneous supersymmetry breaking.


✤ In a simple set of models the inflaton is a massive Wilson line. 
They show the mild UV corrections for large inflaton vev.


✤ Effective action reproduces the axion-four-form action 
proposed by Kaloper and Sorbo. Discrete symmetries 
classified by K-theory torsion groups.


✤ α’ corrections to EFT [See Junghans’s talk and references 
therein]  are important for inflation and moduli stabilization.

Conclusions



✤ A broad class of large field inflationary scenarios that can be 
implemented in any limit of string theory w/ rich pheno:


✤ Moduli stabilization needs to be addressed in detailed models 
[See Hebecker’s talk and references therein]

Conclusions

10 Planck Collaboration: Constraints on inflation

HZ HZ + YP HZ + Ne↵ ⇤CDM
105⌦bh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104⌦ch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 ✓MC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
⌧ 0.125+0.016

�0.014 0.109+0.013
�0.014 0.105+0.014

�0.013 0.089+0.012
�0.014

ln
⇣

1010As

⌘

3.133+0.032
�0.028 3.137+0.027

�0.028 3.143+0.027
�0.026 3.089+0.024

�0.027
ns — — — 0.9603 ± 0.0073
Ne↵ — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
�2� ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best fit �2� ln(L) with respect to the standard ⇤CDM model, using
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CL for the WMAP 9-year data and is further excluded by CMB
data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-` data for
N⇤ . 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ⌘V = 0 and lies within the

95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive
entropy generation priors allowing N⇤ < 50 could reconcile this
model with the Planck data.



✤ A broad class of large field inflationary scenarios that can be 
implemented in any limit of string theory w/ rich pheno:


✤ Moduli stabilization needs to be addressed in detailed models 
[See Hebecker’s talk and references therein]

Conclusions
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