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 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

MPl

String pheno = String theory as a fundamental  theory

⇤EW



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

MPl

String pheno = String theory as a fundamental  theory

⇤EW

Challenge for any proposed quantum gravity:

⇤EW ⌧ MPl .



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

MPl

Many apparent solutions with different cosmologies and low-
energy predictions.  

String pheno = String theory as a fundamental  theory

⇤EW

Challenge for any proposed quantum gravity:

Challenge for string theory:

⇤EW ⌧ MPl .

Obtaining explicit solutions are computationally costly.



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

MPl

Many apparent solutions with different cosmologies and low-
energy predictions.  

String pheno = String theory as a fundamental  theory

⇤EW

Challenge for any proposed quantum gravity:

Challenge for string theory:

⇤EW ⌧ MPl .

Testing solutions experimentally one-by-one is not feasible.  

Obtaining explicit solutions are computationally costly.
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(Obviously incomplete list of) possible resolutions:

Identify consistency conditions for the EFT’s.

Study particularly UV-sensitive phenomena in string theory. 

Construct scenarios with some common properties. 
Statistically study large ensembles of vacua. Identify fruitful and 
barren corners of the ‘landscape’ of vacua. 

Determine the most generic properties of the EFT’s and the 
corresponding cosmologies. 

String pheno = String theory as a fundamental  theory
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(Obviously incomplete list of) possible resolutions:

Identify consistency conditions for the EFT’s.

Study particularly UV-sensitive phenomena in string theory. 

Construct scenarios with some common properties. 
Statistically study large ensembles of vacua. Identify fruitful and 
barren corners of the ‘landscape’ of vacua. 

Determine the most generic properties of the EFT’s and the 
corresponding cosmologies. 

In this talk, I will discuss some generic cosmological consequences of a 
broad class of string theory models, and then  consider how some of 
these models may provide the solution to a longstanding 
astrophysical puzzle.

String pheno = String theory as a fundamental  theory
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Genericity assertions:

h2,1 + h1,1

2(h1,1 � h2,1)

1. String compactifications come with moduli.

Kreuzer, Skarke ’02, 
figure from Candelas,. 
Constantin, Skarke, ’12.
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Genericity assertions:

2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 

constraints from ‘fifth forces’ and from variation of the fine-
structure constant for light scalars are very strong,

Moduli and cosmology
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Genericity assertions:

2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 

so moduli should be massive. But massive moduli can also 
cause problems:

Moduli and cosmology
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Genericity assertions:

2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 

Inflation

�1 �1

⇢
radiation

⇠ a�4(t) .

⇢matter ⇠ a�3(t) ,

After inflation

Moduli and cosmology
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2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 

Inflation

Modulus decay/reheating Present

�1 �1

�1�1

After inflation

the most long-lived moduli start the Big Bang.

Moduli and cosmology
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2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 

The typical decay rate of gravitationally coupled scalars is: 

�� ⇠ 1

8⇡

m3
�

M2
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.

the lightest moduli start the Big Bang. 

Moduli and cosmology
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2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 

The typical decay rate of gravitationally coupled scalars is: 

�� ⇠ 1

8⇡

m3
�

M2
Pl

.

the lightest moduli start the Big Bang. 

m� & 3 · 104 GeV .

Moduli and cosmology
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Genericity assertions:

3. String compactifications come with light hidden sectors.
Examples:  
Closed string U(1)’s, (open string) hidden gauge groups, 

axion-like particles, ...

# low-energy axion-like particles
=
#  axions in tree-level Calabi-Yau compactification
-# non-perturbative effects in the superpotential
-# projected out from orientifold planes
-# anomalous U(1)’s .

Moduli and cosmology
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   suppressed.
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Genericity assertions:

4. Decay rates into light hidden sectors are not automatically 
   suppressed.
Example: 
A modulus:                       
A no-scale Kähler potential: 
Kinetic terms:

Canonical normalisation:

K = �3 ln
�
T + T̄

�
,

L =
3

4⌧2b
(@µ⌧b@

µ⌧b + @µa@
µa) ,

T = ⌧b + iab ,

L =
1

2
@µ(�⌧̃b)@

µ(�⌧̃b) +
1

2
e�2

p
2
3 �⌧̃b@µã@

µã .

(in LVS):  Cicoli, Conlon Quevedo ’12, Higaki, Takahasi, ’12. 

Moduli and cosmology
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4. Decay rates into light hidden sectors are not automatically 
   suppressed.
Example: 
A modulus:                       
A no-scale Kähler potential: 
Kinetic terms:

Canonical normalisation:

K = �3 ln
�
T + T̄

�
,

L =
3

4⌧2b
(@µ⌧b@

µ⌧b + @µa@
µa) ,

T = ⌧b + iab ,

L =
1

2
@µ(�⌧̃b)@

µ(�⌧̃b) +
1

2
e�2

p
2
3 �⌧̃b@µã@

µã .

�⌧b!abab =
1

48⇡

m3
⌧b

M2
Pl

.Decay rate for                 :mab ⌧ m⌧b

(in LVS):  Cicoli, Conlon Quevedo ’12, Higaki, Takahasi, ’12. 

Moduli and cosmology
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2. Moduli can cause cosmological problems:
   the lightest moduli start the Big Bang. 

3. String compactifications come with light hidden sectors.
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Moduli and cosmology



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

x
y

MPl

EEW

Ecpt

Genericity assertions:

1. String compactifications come with moduli.

2. Moduli can cause cosmological problems:
   the lightest moduli start the Big Bang. 

3. String compactifications come with light hidden sectors.

4. Decay rates into light hidden sectors are not automatically   
   suppressed.

Consequence: 
String cosmology includes some amount of dark radiation.  

Moduli and cosmology
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String cosmology includes some amount of dark radiation. 

Visible sector : populated through 
and thermalize at,

⇠ 0.6 GeV
⇣ m�

106 GeV

⌘3/2
,

� ! �� , HH ...

Trh ⇠
�
3H2

decayM
2
Pl

�1/4 ⇠
�
3M2

Pl/⌧
2
�

�1/4 ⇠
m

3/2
�

M
1/2
Pl

Dark radiation
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String cosmology includes some amount of dark radiation. 

Dark radiation: populated through e.g.               with an initial 
energy of,

Visible sector : populated through 
and thermalize at,

⇠ 0.6 GeV
⇣ m�

106 GeV

⌘3/2
,

� ! �� , HH ...

Trh ⇠
�
3H2

decayM
2
Pl

�1/4 ⇠
�
3M2

Pl/⌧
2
�

�1/4 ⇠
m

3/2
�

M
1/2
Pl

� ! aa

Dark radiation

E(0)
a = m�1/2 � Trh ,

and are too weakly coupled to ever thermalise.
�

a

a
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But how much?

�Ne↵ =
8

7

✓
11

4

◆4/3 ⇢d.r.
⇢�

.

⇢
d.r. = ⇢tot

rad. � ⇢� � ⇢⌫ ,Energy density:

Conventional parametrisation:

Dark radiation

�

a
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String cosmology includes some amount of dark radiation. 

But how much?

�Ne↵ =
8

7

✓
11

4

◆4/3 ⇢d.r.
⇢�

.

⇢
d.r. = ⇢tot

rad. � ⇢� � ⇢⌫ ,

�Ne↵ =
43

7

✓
g?(T⌫)

g?(Trh)

◆1/3 ��!d.r.

��!vis.
.

Energy density:

Conventional parametrisation:

From modulus decay:

g⇤(T⌫ decoupling

)/g⇤(Treheat

) = 10.75/61.75 .

0.01 0.02 0.05 0.10 0.20 0.50
0.01

0.05
0.10

0.50
1.00

5.00
10.00

Bd.r.

D
N e

ff

Dark radiation

�

a

a
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Example: the (sequestered) type IIB Large Volume Scenario

Cicoli, Conlon Quevedo ’12, Higaki, Takahasi, ’12. 

Lightest modulus: ⌧b , m⌧B ⇠ 10

6

GeV for m
soft

⇡ TeV .

Dark radiation
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Example: the (sequestered) type IIB Large Volume Scenario

Cicoli, Conlon Quevedo ’12, Higaki, Takahasi, ’12. 

Lightest modulus:

Visible sector decay modes:

Dominant hidden sector decay mode:

Gauge bosons: loop suppressed:

Fermions: chirality suppressed:
Scalars: soft-mass suppressed... :

⌧b , m⌧B ⇠ 10

6

GeV for m
soft

⇡ TeV .

...but Giudice-Masiero term
                        gives:

Γ:
⇠

⇣↵SM

4⇡

⌘2 m3
⌧b

M2
Pl

.

⇠
m2

fm⌧b

M2
Pl

.

⇠ m2
0m⌧b

M2
Pl

.

K � Z
HuHd

Tb + T̄b
+ c.c.

Z2

24⇡

m3
⌧b

M2
Pl

.

Dark radiation

�

a

a
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Example: the (sequestered) type IIB Large Volume Scenario

Cicoli, Conlon Quevedo ’12, Higaki, Takahasi, ’12. 

Lightest modulus:

Visible sector decay modes:

Dominant hidden sector decay mode:

Gauge bosons: loop suppressed:

Fermions: chirality suppressed:
Scalars: soft-mass suppressed... :

⌧b , m⌧B ⇠ 10

6

GeV for m
soft

⇡ TeV .

...but Giudice-Masiero term
                        gives:

Γ:

1

48⇡

m3
⌧b

M2
Pl

.Volume axion: 

⇠
⇣↵SM

4⇡

⌘2 m3
⌧b

M2
Pl

.

⇠
m2

fm⌧b

M2
Pl

.

⇠ m2
0m⌧b

M2
Pl

.

K � Z
HuHd

Tb + T̄b
+ c.c.

Z2

24⇡

m3
⌧b

M2
Pl

.

Dark radiation

�

a
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Example: the (sequestered) type IIB Large Volume Scenario

Cicoli, Conlon Quevedo ’12, Higaki, Takahasi, ’12, Higaki, Nakayama, Takahashi ’13,  see also 
Hebecker et al ’14. 

Lightest modulus:

Result:

⌧b , m⌧B ⇠ 10

6

GeV for m
soft

⇡ TeV .

�Ne↵ =
43

7

✓
g?(T⌫)

g?(Trh)

◆1/3 1

2Z2
⇡ 1.75

Z2
.

See also talk by Angus.

Dark radiation

�

a

a

“Moduli induced axion problem”
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Dark radiation
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Constraints:

1. BBN: ΔNeff >0 increases expansion rate at BBN and 
increase the primordial abundance of 4He. 

2. CMB: ΔNeff >0 effectively enhances the Silk damping 
of high-l multipoles. 

Dark radiation
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Cooke et al, ’13

1. BBN analysis suggests ΔNeff≈0.5.

1�
2�

Yp

(D/H)p

Best fit: �Ne↵ = 0.46± 0.20 .

Dark radiation
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2. CMB data mildly suggests ΔNeff>0.

Planck:

Planck+WMAP-pol+ high-l+BAO:

Planck+WMAP-pol+ high-l+BAO +H0:

ΔNeff

0.26± 0.27 ,

0.48± 0.25 .

Planck+BBN:

0.40± 0.16 .

Planck collaboration ’13, Nollet, Steigman ’13. 

Dark radiation
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2. CMB data mildly suggests ΔNeff>0.

Planck:

Planck+WMAP-pol+ high-l+BAO:

Planck+WMAP-pol+ high-l+BAO +H0:

ΔNeff

0.26± 0.27 ,

0.48± 0.25 .

Planck+BICEP:

Dvorkin, Wyman, Rudd, Hu ’14. 

Planck+WP+SPT/ACT+BICEP 0.81± 0.25 .

Dark radiation
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2. CMB data mildly suggests ΔNeff>0.

Planck:

Planck+WMAP-pol+ high-l+BAO:

Planck+WMAP-pol+ high-l+BAO +H0:

ΔNeff

0.26± 0.27 ,

0.48± 0.25 .

Projected sensitivities:

Galli et al ’10. 

Dark radiation

Planck-pol:

‘Next generation’: ±0.044 .

±0.20 ,
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For the rest of this talk, I will entertain the theoretically 
and observationally well-motivated assumption that there 
is some axionic dark radiation in our universe.

What do we know about it?

Characteristic energy:

Flux:

E(today)

a ⇠
✓
106 GeV

m�

◆
1/2

200 eV ,

TCMB < Etoday

a . 2 keV .

�a

���
Ea=200 eV

⇠
✓
�Neff

0.50

◆
106 cm�2s�1 .

Conlon, DM ’13. 

Axionic dark radiation
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For the rest of this talk, I will entertain the theoretically 
and observationally well-motivated assumption that there 
is some axionic dark radiation in our universe.

What do we know about it?

Spectrum:

200 400 600 800

1

2

2

4

6

8

E!eV

d
! dE
"103 c

m
"
2
s"
1
eV
"
1 #

#
ax
io
ns
"1057

kp
c"
3
eV
"
1 #

Conlon, DM ’13. 

Cosmic Axion Background (CAB):

Axionic dark radiation
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For the rest of this talk, I will entertain the theoretically 
and observationally well-motivated assumption that there 
is some axionic dark radiation in our universe.

What do we know about it?

Model dependent couplings:

L = 1
2@µa@

µa� 1
2m

2
aa

2 � 1
4

a
M Fµ⌫ F̃µ⌫ + caf

@µa
2M  f�5�µ f ,

Axionic dark radiation
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For the rest of this talk, I will entertain the theoretically 
and observationally well-motivated assumption that there 
is some axionic dark radiation in our universe.
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Model dependent couplings:

L = 1
2@µa@

µa� 1
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2
aa
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4

a
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2M  f�5�µ f ,

Axionic dark radiation



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

For the rest of this talk, I will entertain the theoretically 
and observationally well-motivated assumption that there 
is some axionic dark radiation in our universe.

What do we know about it?

From: Dias, Machado, 
Nishi, Ringwald, 
Vaudrevange ’14. 

Axionic dark radiation
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The CAB may access high-energy processes which otherwise 
would be kinematically inaccessible.

3 4 5 6 7 8

8.5

9

9.5

Log10!mΦ"2 GeV#

L
o

g
1
0
!
f a
"G

eV
#

BBN bounds on fa

 s > LEFT

m > mFIRAS

m > mnext gen.
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Detecting a CAB
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ALP-photon conversion:
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At the linearised level the three-level system is governed by 
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Q: Can a CAB be detected? 

Detecting a CAB



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

Quick example: For CAST-like experiment:In the lab:

a

�
10 m

For an aperture of 1 m2 and a baseline of 10 m with 10 T 
magnets, the expected event rate from CAB conversion is, 

for M=1011 GeV.

One expected event per ~300 years.

R(a ! �) ⇠ �a · P (a ! �) ⇡ 108 s�1 · 10�18 ⇡ 10�10 s�1 ,

Detecting a CAB
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For an aperture of 1 m2 and a baseline of 10 m with 10 T 
magnets, the expected event rate from CAB conversion is, 

for M=1011 GeV.

One expected event per ~300 years.

R(a ! �) ⇠ �a · P (a ! �) ⇡ 108 s�1 · 10�18 ⇡ 10�10 s�1 ,

Detecting a CAB

A Cosmic Axion Background is very dark
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In space:

Detecting a CAB
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Galaxy clusters are the largest gravitationally bound objects 
in the universe, and typically contain magnetic fields of μG 
strength which are coherent over kiloparsec scales.* 

Clusters, such as Coma, then provide an interesting 
laboratory to search for a Cosmic Axion Background.

In space:

* 1 kpc = 3*1019 m. 

Detecting a CAB
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In space:

Towards the lower end of the X-ray spectrum, clusters are 
visible through the thermal Bremsstrahlung emission from 
the hot intracluster medium (ICM) with T~8 keV. 

Detecting a CAB
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In space:

Towards the lower end of the X-ray spectrum, clusters are 
visible through the thermal Bremsstrahlung emission from 
the hot intracluster medium (ICM) with T~8 keV. 

Detecting a CAB

Excess emission above the thermal background has been 
observed by a number of experiments in a large number of 
galaxy clusters since 1996.
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Liu et al, 1996.

In space:

The cluster soft X-ray excess
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Brief history of the cluster soft X-ray excess: 
The cluster soft excess was first discovered in Coma 
and  Virgo using EUVE data, and was soon after 
claimed also in other clusters. 

Challenges in background subtraction (and obtaining 
the correct H column densities) led to an initial 
controversy regarding the excess in some clusters.  

The ROSAT satellite provided a large (2o) field-of-
view and a good sensitivity to soft X-rays, and is to-
date the best instrument for soft excess studies.

ROSAT consolidated the discovery, and established a 
significant excess in dozens of additional clusters. 

The cluster soft X-ray excess
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Bonamente  et al, ’02.

The cluster soft X-ray excess



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

Properties of the cluster soft X-ray excess:

It is soft. No excess is detected above ~400 eV.

It is diffuse and cannot be associated with local 
sources. 

It is extended and can be found out to large radii (at 
least 5 Mpc for Coma).

As a general morphological trend based on a study of 
38 clusters, the excess tends to become more 
significant away from the cluster centre. 

The cluster soft X-ray excess
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Properties of the cluster soft X-ray excess:

Bonamente  et al, ’02.

The cluster soft X-ray excess
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Proposed astrophysical explanations:

It is bremmstrahlung from a warm (T~200 eV) gas. 

It is inverse-Compton of the CMB off relativistic cosmic 
ray electrons. 

The cluster soft X-ray excess
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Proposed astrophysical explanations:

It is bremmstrahlung from a warm (T~200 eV) gas. 

It is inverse-Compton of the CMB off relativistic cosmic 
ray electrons. 

... but no associated emission lines. 

... but no associated gamma-ray bremsstrahlung flux. 
Coma: predicted gamma-ray flux of ~ 2*10-8 cm-2 s-1, but 
Fermi upper limit: < 0.6-2.9*10-9 cm-2 s-1.

Atoyan, Vollker ‘00, 
Sarazin ‘99,

Zandanel, Ando, ‘13. 

The cluster soft X-ray excess
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Proposed astrophysical explanations:

In sum, neither proposed astrophysical explanation is 
completely compelling.

Conlon, DM ’13, Angus, Conlon, DM, Powell, Witkowski, ’13.

The cluster soft X-ray excess
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Proposed astrophysical explanations:

In sum, neither proposed astrophysical explanation is 
completely compelling.

a

�

How about axion-photon 
conversion of the CAB?

Conlon, DM ’13, Angus, Conlon, DM, Powell, Witkowski, ’13.

The cluster soft X-ray excess
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The CAB and the cluster soft X-ray excess

*   

Axion-photon conversion in clusters:

Clusters can be rather efficient converters of axions 
into photons.  

The conversion probability depends on the magnitude 
and coherence length of the magnetic field, the 
energy of the axion and plasma frequency of the 
plasma. 
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The CAB and the cluster soft X-ray excess

*   

Faraday rotation: the magnetised ICM induces different 
phase velocities for left- and right-handed photons, giving 
rise to a rotation of the plane of polarisation proportional 
to  

Magnetic fields in clusters:

�✓ / �2

Z
neBkdl .
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The CAB and the cluster soft X-ray excess

*   

Faraday rotation: the magnetised ICM induces different 
phase velocities for left- and right-handed photons, giving 
rise to a rotation of the plane of polarisation proportional 
to  

Magnetic fields in clusters:

�✓ / �2

Z
neBkdl .

Rotation 
Measure (RM)

Bonafede thesis, 2010.
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The CAB and the cluster soft X-ray excess

*   

Faraday rotation: the magnetised ICM induces different 
phase velocities for left- and right-handed photons, giving 
rise to a rotation of the plane of polarisation proportional 
to  

Magnetic fields in clusters:

�✓ / �2

Z
neBkdl .

Rotation 
Measure (RM)

Bonafede et al 2010.

A model for the Coma magnetic field consistent with RM’s 
has been obtained as,

~B(tot) = B
0

~b

✓
ne(r)

ne(0)

◆⌘

.
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The CAB and the cluster soft X-ray excess

*   

Faraday rotation: the magnetised ICM induces different 
phase velocities for left- and right-handed photons, giving 
rise to a rotation of the plane of polarisation proportional 
to  

Magnetic fields in clusters:

�✓ / �2

Z
neBkdl .

Rotation 
Measure (RM)

Bonafede et al 2010.

A model for the Coma magnetic field consistent with RM’s 
has been obtained as,

~B(tot) = B
0

~b

✓
ne(r)

ne(0)
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.

Gaussian random 
field with power-

law spectrum. 
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The CAB and the cluster soft X-ray excess

*   

Faraday rotation: the magnetised ICM induces different 
phase velocities for left- and right-handed photons, giving 
rise to a rotation of the plane of polarisation proportional 
to  

Magnetic fields in clusters:
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Rotation 
Measure (RM)

Bonafede et al 2010.

A model for the Coma magnetic field consistent with RM’s 
has been obtained as,

~B(tot) = B
0

~b

✓
ne(r)

ne(0)

◆⌘

.

Gaussian random 
field with power-

law spectrum. 

Parameters: 
(B0, η, Λmin, Λmax, n)
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The CAB and the cluster soft X-ray excess
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The CAB and the cluster soft X-ray excess

*   

Simulation:

zSize: 20003 points = 1 Mpc3.
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The CAB and the cluster soft X-ray excess

*   

Simulation:
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The CAB and the cluster soft X-ray excess

*   
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The CAB and the cluster soft X-ray excess

25 eV

Coma conversion probabilities:

Angus, Conlon, DM, Powell, 
Witkowski, ’13.
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100 eV

Coma conversion probabilities:

Angus, Conlon, DM, Powell, 
Witkowski, ’13.
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The CAB and the cluster soft X-ray excess

300 eV

Coma conversion probabilities:

Angus, Conlon, DM, Powell, 
Witkowski, ’13.
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The CAB and the cluster soft X-ray excess

600 eV

Coma conversion probabilities:

Angus, Conlon, DM, Powell, 
Witkowski, ’13.
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The CAB and the cluster soft X-ray excess

1000 eV

Coma conversion probabilities:

Angus, Conlon, DM, Powell, 
Witkowski, ’13.
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The CAB and the cluster soft X-ray excess

2 keV

Coma conversion probabilities:

Angus, Conlon, DM, Powell, 
Witkowski, ’13.



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

The CAB and the cluster soft X-ray excess

The conversion probabilities “fall out of ” the small angle 
approximation as the impact parameter is decreased.

Model 1:
Λ ~ 2-34 kpc ~O(15 kpc).
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Angus, Conlon, DM, Powell, 
Witkowski, ’13.
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The CAB and the cluster soft X-ray excess

The conversion probabilities “fall out of ” the small angle 
approximation as the impact parameter is decreased.
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Angus, Conlon, DM, Powell, 
Witkowski, ’13.
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The CAB and the cluster soft X-ray excess

Comparison with observations:
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Angus, Conlon, DM, Powell, 
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The CAB and the cluster soft X-ray excess

Further features:

0 100 200 300 400 500
Energy !eV"

Angus, Conlon, DM, Powell, 
Witkowski, ’13.
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The CAB and the cluster soft X-ray excess
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Angus, Conlon, DM, Powell, 
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The CAB and the cluster soft X-ray excess

Outskirts of Coma:
Soft X-ray excess found out to 5 Mpc from centre. 

Conlon, Kraljic, Rummel, ’14.
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The CAB and the cluster soft X-ray excess

Other clusters:
Soft X-ray excess found in other clusters.

Powell, (to appear).
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The CAB and the cluster soft X-ray excess

Yes. Axion-photon conversion of the CAB may explain 
the soft excess in Coma.

However, the results are sensitive to the magnetic field 
structure beyond what is currently constrained by 
observations.

Further studies of other clusters (in detail and 
statistically), and a better understanding of the cluster 
magnetic field will help clarifying if the CAB explanation 
is viable.

Other consequences of the existence of a CAB, such as 
axion-photon conversion in the Milky Way* may provide 
complimentary constraints/signals. * Fairbairn ’13,

Conlon, Day, ’14.

Does it work?
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The CAB and the cluster soft X-ray excess

Some amount of dark radiation should be expected for 
generic string compactifications. Bounds on the amount 
of dark radiation constrain explicit models. 

Axionic dark radiation is hard to detect, but ALP-photon 
conversion in the μG magnetic fields of galaxy clusters 
provide possibly the most powerful setting to search for 
such particles.

For the Coma cluster, ALP-photon conversion can 
explain the longstanding soft X-ray excess.

Conclusion



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford

The CAB and the cluster soft X-ray excess

Thanks!
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Extra slides
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The Cosmic Axion Background
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The Cosmic Axion Background
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Proposed astrophysical explanations of the 
cluster soft X-ray excess

Thermal model:
Default suggestion at time of detection, currently 
disfavoured as main explanation. 

Problems: 
The gas would cool too rapidly:

pV = nRT
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Proposed astrophysical explanations of the 
cluster soft X-ray excess

Thermal model:
Default suggestion at time of detection, currently 
disfavoured as main explanation. 

Problems: 
The gas would cool too rapidly:

Still, suggested to be possible explanation of excess at large 
radii.

pV = nRTSame for 
hot & warm gas

Smaller for 
 warm gas

Larger for warm gas

t(warm)

cooling

⇠ n�2

(warm)

⇡ 10�4n�2

(hot)

⇠ 108 yrs ⌧ ⌧ (cluster dyn.) .

It would give rise to unobserved emission lines.
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Non-thermal model:
Inverse Compton Scattering of CMB photons off non-
thermal gas:

Hwang 1997, 
Bowyer et al 2004, 
Sarazin 1999,
Atoyan et al 1999.

Escattered ⇠ �2ECMB .

Proposed astrophysical explanations of the 
cluster soft X-ray excess
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