Effectively Fielding Inflation

Large fields, open systems and inflation

Cliff Burgess
Why EFTs?

- *Decoupling*: short-distance physics is largely irrelevant for long-distance physics
- EFTs concisely express what is important at long distances
Why EFTs?

• *Decoupling*: short-distance physics is *largely* irrelevant for long-distance physics

• EFTs concisely express what is important at long distances

• *Cosmology likes the unnatural! (what UV completions hate)*
Naturalness?

- **Naturalness is so 20th century...**

- LHC, inflation,

- Cosmological constant

What if there were a solution? Supersymmetric extra dimensions still seems to work (review: 1309.4133)
Outline

• Large fields and tensor perturbations
 • Trigonometric, exponential and power-law potentials
 \((1306.3512 \text{ and } 1404.6236)\)
 \(w\) Cicoli, Quevedo & Williams
Outline

• Large fields and tensor perturbations
 • Trigonometric, exponential and power-law potentials
 (1306.3512 and 1404.6236)
 \textit{w Cicoli, Quevedo \& Williams}

• Open EFTs and EFTs w/o effective lagrangians
 • Decoherence, stochastic inflation and the EFT outside the horizon (1406.xxxx and 1407.xxxxy)
 \textit{w Holman, Tasinato \& Williams}
Part I

LARGE FIELD EFTS
Large fields in EFT

Exponential potentials

If you absolutely must have ϕ^2 inflation

LARGE FIELD EFTS
Large Fields in EFT

- Why large fields?
Large Fields in EFT

- Why large fields?

\[P_s(k) = A_s k^{n_s-1} \quad r = \frac{A_T}{A_S} \]
n_s and r predicted in single-field slow roll inflation: \(V(\phi) \)

\[
\epsilon = \frac{1}{2} \left(\frac{M_p V'}{V} \right)^2 \quad \eta = \frac{M_p^2 V''}{V}
\]

\[
n_s - 1 = -6\epsilon + 2\eta \quad r = 16\epsilon
\]
Large Fields in EFT

Why large fields?

\[n_s \text{ and } r \text{ predicted in single-field slow roll inflation: } V(f) \]

\[\epsilon = \frac{1}{2} M_p V' V^2 \]

\[n_s - 1 = -6 \epsilon + 2\eta \]

\[r = 16 \epsilon \]

Usually large \(r \) corresponds to large excursions in field space

\[\Delta \phi > M_p (r/4\pi)^{1/2} \quad (\text{Lyth}) \]

Can evade this, but

\text{SHOULD EMBRACE IT!}
Large Fields in EFT

Q: Need large fields be inconsistent with decoupling (as expressed eg by effective field theory techniques) and control of calculations?

A: Not in principle: EFT and decoupling rely on low energy, and not small fields.

SUSY flat directions provide existence proof

Require asymptotic form for $V(\phi)$
Large Fields in EFT

- Why large fields?

BUT Large field inflation is often NOT what you get from UV completions (not a theorem...)
Large Fields in EFT

- Why large fields?

J. Polchinski ICHEP 08 summary talk

34th International Conference on High Energy Physics, Philadelphia, 2008

![Diagram showing plots of r vs. n_s with various data points and shaded regions representing different theories and observations.](image-url)
Large Fields in EFT

String models like small r

- Why large fields?
Large Fields in EFT

String models like small r
Large Fields in EFT

- Why large fields?

- What not to do: expand in powers of ϕ
 - Need approximation that works at large fields
Large Fields in EFT

For example: *pseudo-Goldstone bosons*

Perturb around symmetry limit:

\[L_{\text{kin}} = g_{ab}(\phi) \partial \phi^a \partial \phi^b \]

\[V(\phi) = V_0 \]

Once symmetry breaks find, eg:

\[V = V_0 + V_1 \cos(\phi/f) \]
Large Fields in EFT

For example: *pseudo-Goldstone bosons*

Or if symmetry is non-compact: \(\Phi = e^\varphi \rightarrow \gamma \Phi \)

\[
V = V_0 + V_1 \exp\left(-\varphi/f\right) + \cdots
\]
Large Fields in EFT

Exponential potentials fit the Planck data well:

- Why large fields?
- What not to do: expand in powers of f
- Need approximation that works at large fields

(And include the Starobinsky R^2 model)
Large Fields in EFT

Exponential potentials: progress on the \(\eta \) problem

\[
V(\varphi) = V_0 \left(1 - e^{-k \varphi} + \cdots \right)
\]

so

\[
\varepsilon = e^{-2k \varphi} \quad \text{and} \quad \eta = e^{-k \varphi}
\]

so slow roll is same as large field
Large Fields in EFT

- Why large fields?
- What not to do: expand in powers of f
- Need approximation that works at large fields

Exponential potentials: progress on the η problem

\[
V(\varphi) = V_0(1 - e^{-k\varphi} + \cdots)
\]

so

\[
\epsilon = e^{-2k\varphi} \quad \text{and} \quad \eta = e^{-k\varphi}
\]

since $\epsilon \sim \eta^2$ get prediction $r \sim (n_s-1)^2$
Large Fields in EFT

- Why large fields?
- What not to do: expand in powers of \(f \)
- Need approximation that works at large fields

Exponential potentials: progress on the \(\eta \) problem

\[
V(\varphi) = V_0 (1 - e^{-k \varphi} + \ldots)
\]

so

\[
\epsilon = e^{-2k \varphi} \quad \text{and} \quad \eta = e^{-k \varphi}
\]

since \(\epsilon \sim \eta^2 \) get prediction \(r \sim (n_s-1)^2 \)

can adjust \(k \) to vary \(r \) but hard to get \(r > 0.11 \)
Large Fields in EFT

Why large fields?

What not to do:

Expand in powers of f

Need approximation that works at large fields

Exponential potentials arise generically when modulus like extra-dimensional size, r, is the inflaton (though can also be more complicated):

$$V(\varphi) = V_0 \left(1 - \frac{1}{r^p} + \cdots\right) = V_0 \left(1 - e^{-k \varphi} + \cdots\right)$$

since $L = M^2 \frac{(\partial r)^2}{r^2}$ implies $\frac{r}{\ell} = e^{\varphi/M}$
Large Fields in EFT

• Why large fields?

• What not to do: expand in powers of ϕ
 • Need approximation that works at large fields

• If you absolutely must have ϕ^2 inflation…
When large fields are small:

* Large r requires $\varphi > M_p$

* Taylor expansion requires $\varphi < f$

\[V(\varphi / f) \approx V_0 + V_1 \varphi^2 + \ldots \]

* If

These can be consistent if: $f > M_p$
Large Fields in EFT

Summary:

- **Why large fields?**
 - Need approximation that works at large fields.
 - If you absolutely must have f^2 inflation...

- **What not to do:**
 - Expand in powers of f.

Large fields need not be inconsistent with low-energies, but must understand the large-field limit. Generically get trigonometric or exponential potentials, though others are possible (even f^2).

Large r likely to be a great slayer of models, if true.
Part I

EFTS W/O EFF LAGRANGIANS
Open EFTs

Effective theory outside the horizon

EFTS W/O EFF LAGRANGIANS
EFTs w/o Effective Lagrangians

- Open EFTs
EFTs w/o Effective Lagrangians

- Usually EFTs rely on simplicity when $E < M$ to summarize high-energy effects for low-energy observables in terms of an effective Lagrangian.

\[
e^{iS_{\text{eff}}(\varphi)} = \int D\psi \ e^{iS(\varphi,\psi)}
\]

\[S_{\text{eff}} \text{ is simple when expanded in } \partial / M\]
EFTs w/o Effective Lagrangians

• Open EFTs

Such a description is not in general possible for open systems, even when degrees of freedom may be integrated out.

eg: particle moving through a medium

courtesy Scientific American
EFTs w/o Effective Lagrangians

Such a description is not in general possible for open systems, even when degrees of freedom may be integrated out.

Open systems, e.g., particle moving through a medium

L_{eff} need not exist since in general pure states can evolve to mixed due to ability to exchange info.

courtesy Scientific American
EFTs w/o Effective Lagrangians

- Open EFTs

EFT nonetheless can exist: *ie things can simplify given a hierarchy of scales.*

Divide system into small observed subsystem, A, in presence of a large environment, B:

\[H = H_A + H_B + V \]

then simplifications can arise when

\[t_c \ll t_p \]

Where t_c is the correlation time of V in B and t_p is the time beyond which perturbation in V fails.
EFTs w/o Effective Lagrangians

For such a system evolution over times $t \gg t_p$ can be computed by computing a coarse-grained evolution:

$$(d\rho_A/dt)_{cg} = \frac{1}{\Delta t} Tr_B \left[U(\Delta t) \rho \ U^*(\Delta t) \right]$$

for $t_c \ll \Delta t \ll t_p$ and integrating.

for $A \ll B$ in this limit this is a Markov process
EFTs w/o Effective Lagrangians

• Open EFTs

For such a system evolution over times $t \gg t_p$ can be computed by computing a coarse-grained evolution:

$$\frac{d \rho_A}{dt} = U \Delta t$$

for $t_c \ll \Delta t \ll t_p$ and integrating.

This is what allows calculation of light propagation over distances for which scattering from atoms is 100% likely

for $A \ll B$ in this limit this

www.osa-opn.org
EFTs w/o Effective Lagrangians

- Open EFTs

- Effective theory outside the horizon
EFTs w/o Effective Lagrangians

Q: What is the effective theory outside the Hubble scale during inflation?

Claim: this is described by an Open EFT

System A: extra-Hubble modes: \(\frac{k}{a} \ll H \)

System B: intra-Hubble modes: \(\frac{k}{a} > H \)

Correlation time: \(t_c \approx H^{-1} \)
EFTs w/o Effective Lagrangians

Calculation of off-diagonal matrix elements of ρ_A:

- **Open EFTs**

 suppose $V = \int A^i B_i \, d^3x$

 and $\langle \delta B_i(x) \delta B_j(y) \rangle = U_{ij}(x) \delta(x - y)$

- **Effective theory outside the horizon**

 also extra-Hubble squeezing of modes implies

 $A^i(\Phi, \Pi)|\varphi > \rightarrow A^i(\Phi, 0)|\varphi > = \alpha^i(\varphi)|\varphi >$

 so A^i is always diagonal in field eigenbasis
Calculation of off-diagonal matrix elements of ρ_A:

$\langle \varphi | \rho_A | \tilde{\varphi} \rangle = \langle \varphi | \rho_{A0} | \tilde{\varphi} \rangle e^{-\Gamma}$

where $\Gamma = \int d^3 x dt \ [\alpha^i - \tilde{\alpha}^i][\alpha^j - \tilde{\alpha}^j] U_{ij}$

implies off-diagonal elements *decohere* as with variance narrowing on Hubble times: $\sigma^{-2} \propto a^3$
What of the diagonal matrix elements of ρ_A?

For these $\Gamma = 0$ and so the probabilities are governed by initial quantum state.

$$P[\varphi] = \langle \varphi | \rho_A | \varphi \rangle = |\Psi(\varphi)|^2$$

Schrodinger evolution plus tracing of sub-Hubble modes implies P satisfies

$$\frac{\partial P}{\partial t} = N \frac{\partial^2 P}{\partial \varphi^2}$$

with N as in Starobinsky’s stochastic inflation.
EFTs w/o Effective Lagrangians

Summary:

- **Open**
 Open systems provide a *new type of EFT* where simplicity of scale hierarchy is not captured by an effective lagrangian.

- **Effective**
 Appropriate for EFT outside inflationary Hubble scale, and provides *derivation of Starobinsky’s stochastic inflation* as well as the rapid *decoherence of primordial quantum fluctuations*.
Summary
Summary

- Inflation with large fields
 - Requires understanding of large-field regime
 - Pseudo-Goldstone bosons lead to trig, exponential potentials (and even power laws sometimes)
 - r larger than 0.1 a challenge for many models
Summary

- Inflation with large fields
 - Requires understanding of large-field regime
 - Pseudo-Goldstone bosons lead to trig, exponential potentials (and even power laws sometimes)
 - r larger than 0.1 a challenge for many models

- Inflation and Open EFTs
 - EFT for open systems, without eff lagrangian
 - Gives extra-Hubble EFT: decoherence + Starobinsky
 - New domains of validity of EFT approximation
Fin
The CC message:

• The cosmological constant problem is telling us that there must be two micron-sized dimensions (plus possibly more smaller ones)
The CC message:

- The cosmological constant problem is telling us that there must be two micron-sized dimensions (plus possibly more smaller ones)
- These dimensions must be supersymmetric (but need *NOT* require the MSSM)
“...when you have eliminated the impossible, whatever remains, however improbable, must be the truth.”

A. Conan Doyle
The CC message:

- The cosmological constant problem is telling us that there must be two micron-sized dimensions (plus possibly more smaller ones)
- These dimensions must be supersymmetric (but need *NOT* require the MSSM)
- *More generally:* back-reaction for higher codimension objects is a very promising, but largely unexplored area